This article reports on a novel type of microspheres (∼720 nm in diameter) prepared via precipitation polymerization and constructed by optically active helical substituted polyacetylene (PSA). The microspheres were obtained in high yield (>80%), with regular morphology and narrow size distribution. PSA forming the microspheres was found to adopt helices with predominant one-handed screw sense, according to circular dichroism and UV−vis absorption spectroscopies and specific optical rotation measurements. The helical conformations of PSA endowed the microspheres thereof with considerable optical activity. The chiral microspheres feature in combining in one entity the advantages of both chiral polymers and the micrometer-sized particles in scale and spherical morphology and thus are expected to find some significant applications. This is well exemplified by successful induction of enantioselective crystallization with the chiral microspheres. Such chiral microspheres efficiently induced enantioselective crystallization of alanine enantiomers: (S)-PSA preferably induced L-alanine to form octahedral crystals while (R)-PSA toward D-alanine forming needle-like crystals, with a remarkably high ee (85%). This is the first precipitation polymerization of substituted acetylenes for preparing chiral polymeric microspheres. The present chiral microspheres represent a new type of advanced functional chiral materials.
A novel and general strategy for the synthesis of carbon-encapsulated metal oxide hollow nanoparticles (HNPs) and pure metal oxide HNPs was developed from carbon-encapsulated metal nanoparticles by controlled oxidation in the air. The materials were characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction measurements. It was found that the morphologies and compositions of HNPs were easily tailored through adjustment of the oxidation conditions. When used as the anode materials for lithium-ion batteries, carbon-encapsulated α-Fe2O3 HNPs exhibit excellent cycling performance and a higher reversible capacity of about 700 mA h g−1 after the 60th cycle and possess great potential application in lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.