Golgin subfamily B member 1 (GOLGB1) gene encodes the coat protein 1 vesicle inhibiting factor, giantin. Previous study showed that mutations of the GOLGB1 gene are associated with dozens of human developmental disorders and diseases. However, the biological function of GOLGB1 gene in chicken is still unclear. In this study, we detected a novel 65-bp insertion/deletion (indel) polymorphism in the chicken GOLGB1 intron 5. Association of this indel with chicken growth and carcass traits was analyzed in a yellow chicken population. Results showed that this 65-bp indel was significantly associated with chicken body weight (p < 0.05), highly significantly associated with neck weight, abdominal fat weight, abdominal fat percentage and the yellow index b of breast (p < 0.01). Analysis of genetic parameters indicated that “I” was the predominant allele. Except for the yellow index b of breast, II genotype individuals had the best growth characteristics, by comparison with the ID genotype and DD genotype individuals. Moreover, the mRNA expression of GOLGB1 was detected in the liver tissue of chicken with different GOLGB1 genotypes, where the DD genotype displayed high expression levels. These findings hinted that the 65-bp indel in GOLGB1 could be assigned to a molecular marker in chicken breeding and enhance production in the chicken industry.
The Ras and Rab interactor 2 (RIN2) gene, which encodes RAS and Rab interacting protein 2, can interact with GTP-bound Rab5 and participate in early endocytosis. This study found a 61-bp insertion/deletion (indel) in the RIN2 intron region, and 3 genotypes II, ID, and DD were observed. Genotype analysis of mutation sites was performed on 665 individuals from F2 population and 8 chicken breeds. It was found that the indel existed in each breed and that yellow feathered chickens were mainly of the DD genotype. Correlation analysis of growth and carcass traits in the F2 population of Xinghua and White Recessive Rock chickens showed that the 61-bp indel was significantly correlated with abdominal fat weight, abdominal fat rate, fat width, and hatching weight (P < 0.05). RIN2 mRNA was expressed in all the tested tissues, and its expression in abdominal fat was higher than that in other tissues. In addition, the expression of the RIN2 mRNA in the abdominal fat of the DD genotype was significantly higher than that of the II genotype (P < 0.05). The transcriptional activity results showed that the luciferase activity of the pGL3-DD vector was significantly higher than that of the pGL3-II vector (P < 0.01). Moreover, the results indicate that the polymorphisms in transcription factor binding sites (TFBSs) of 61-bp indel may affect the transcriptional activity of RIN2, and thus alter fat traits in chicken. The results of this study showed that the 61-bp indel was closely related to abdominal fat-related and hatching weight traits of chickens, which may have reference value for molecular marker-assisted selection of chickens.
Background: G-protein subunit beta 1 like (GNB1L) encodes a G-protein beta-subunit-like polypeptide. Chicken GNB1L is upregulated in the breast muscle of high feed efficiency chickens, and its expression is 1.52-fold that in low feed efficiency chickens. However, no report has described the effects of GNB1L indels on the chicken carcass and growth traits. Results: This study identified a 31-bp indel in the 5′ untranslated region (UTR) of GNB1L and elucidated the effect of this gene mutation on the carcass and growth traits in chickens. The 31-bp indel showed a highly significant association with the body weight at 8 different stages and was significantly correlated with daily gains at 0 to 4 weeks and 4 to 8 weeks. Similarly, the mutation was significantly associated with small intestine length, breast width, breast depth and breast muscle weight. Moreover, DD and ID were superior genotypes for chicken growth and carcass traits. Conclusions: These results show that the 31-bp indel of GNB1L significantly affects chicken body weight and carcass traits and can serve as a candidate molecular marker for chicken genetics and breeding programs.
Background: Ras and Rab interactor 2 (RIN2) gene, encoding RAS and Rab interacting protein 2, can interact with GTP-bound Rab5 and participate in early endocytosis. Deletion of RIN2 may impair Rab5-related endosome signaling, leading to abnormal phenotypes. However, no research has been reported on the functions of RIN2 related to animal production.Results: A 61-bp insertion/deletion (indel) in the RIN2 intron region in this study. The genotype analysis of mutation sites was performed on 550 individuals from 7 different chicken breeds, and it was found that the indel exists in each breed and the local breed chickens are mainly DD genotypes. Correlation analysis of the indel with growth traits and carcass traits of the F2 population of Xinghua and White Recessive Rock chicken showed that the RIN2 61-bp deletion mutation site was significantly correlated with abdominal fat weight, fat width and hatching weight traits (P < 0.05). RIN2 mRNA was expressed in all test tissues, and the expression level of abdominal fat was higher than that in other tissues. In addition, it was further found that the expression level of type II RIN2 mRNA in abdominal fat was significantly different from that of ID type and DD type (P < 0.05). Conclusion: The results showed that the mutation was closely related to the abdominal fat-related and hatching weight traits of chickens, which may have certain reference value for molecular marker-assisted selection of chickens.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers