We describe an update of MirGeneDB, the manually curated microRNA gene database. Adhering to uniform and consistent criteria for microRNA annotation and nomenclature, we substantially expanded MirGeneDB with 30 additional species representing previously missing metazoan phyla such as sponges, jellyfish, rotifers and flatworms. MirGeneDB 2.1 now consists of 75 species spanning over ∼800 million years of animal evolution, and contains a total number of 16 670 microRNAs from 1549 families. Over 6000 microRNAs were added in this update using ∼550 datasets with ∼7.5 billion sequencing reads. By adding new phylogenetically important species, especially those relevant for the study of whole genome duplication events, and through updating evolutionary nodes of origin for many families and genes, we were able to substantially refine our nomenclature system. All changes are traceable in the specifically developed MirGeneDB version tracker. The performance of read-pages is improved and microRNA expression matrices for all tissues and species are now also downloadable. Altogether, this update represents a significant step toward a complete sampling of all major metazoan phyla, and a widely needed foundation for comparative microRNA genomics and transcriptomics studies. MirGeneDB 2.1 is part of RNAcentral and Elixir Norway, publicly and freely available at http://www.mirgenedb.org/.
Small non-coding RNAs have gained substantial attention due to their roles in animal development and human disorders. Among them, microRNAs are special because individual gene sequences are conserved across the animal kingdom. In addition, unique and mechanistically well understood features can clearly distinguish bona fide miRNAs from the myriad other small RNAs generated by cells. However, making this distinction is not a common practice and, thus, not surprisingly, the heterogeneous quality of available miRNA complements has become a major concern in microRNA research. We addressed this by extensively expanding our curated microRNA gene database - MirGeneDB - to 45 organisms, encompassing a wide phylogenetic swath of animal evolution. By consistently annotating and naming 10,899 microRNA genes in these organisms, we show that previous microRNA annotations contained not only many false positives, but surprisingly lacked >2000 bona fide microRNAs. Indeed, curated microRNA complements of closely related organisms are very similar and can be used to reconstruct ancestral miRNA repertoires. MirGeneDB represents a robust platform for microRNA-based research, providing deeper and more significant insights into the biology and evolution of miRNAs as well as biomedical and biomarker research. MirGeneDB is publicly and freely available at http://mirgenedb.org/.
Small non-coding RNAs have gained substantial attention due to their roles in animal development and human disorders. Among them, microRNAs are unique because individual gene sequences are conserved across the animal kingdom. In addition, unique and mechanistically well understood features can clearly distinguish bona fide miRNAs from the myriad other small RNAs generated by cells. However, making this separation is not a common practice and, thus, not surprisingly, the heterogeneous quality of available miRNA complements has become a major concern in microRNA research. We addressed this by extensively expanding our curated microRNA gene database MirGeneDB to 45 organisms that represent the full taxonomic breadth of Metazoa. By consistently annotating and naming more than 10,900 microRNA genes in these organisms, we show that previous microRNA annotations contained not only many false positives, but surprisingly lacked more than 2,100 bona fide microRNAs. Indeed, curated microRNA complements of closely related organisms are very similar and can be used to reconstruct Metazoan evolution. MirGeneDB represents a robust platform for microRNA-based research, providing deeper and more significant insights into the biology and evolution of miRNAs but also biomedical and biomarker research. MirGeneDB is publicly and freely available at http://mirgenedb.org/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.