We assessed the value of fusion 18F-fluoromethylcholine (18F-choline) PET/MRI for image-guided (targeted) prostate biopsies to detect significant prostate cancer (Gleason ≥ 3 + 4) compared with standard (systematic 12-core) biopsies. Methods Within an ongoing prospective clinical trial, hybrid 18F-choline PET/CT and multiparametric 3T MRI (mpMRI) of the pelvis were performed in 36 subjects with a rising prostate-specific antigen for known (n = 15) or suspected (n = 21) prostate cancer before a prostate biopsy procedure. PET and T2-weighted MR volumes of the prostate were spatially registered using commercially available software. Biopsy targets were selected on the basis of visual appearance on MRI and graded as low, intermediate, or high risk for significant disease. Volumes of interest were defined for MR-identified lesions. 18F-choline uptake measures were obtained from the MR target and a mirrored background volume of interest. The biopsy procedure was performed after registration of real-time transrectal ultrasound with T2-weighted MR and included image-guided cores plus standard cores. Histologic results were determined from standard and targeted biopsy cores as well as prostatectomy specimens (n = 10). Results Fifteen subjects were ultimately identified with Gleason ≥ 3 + 4 prostate cancer, of which targeted biopsy identified significantly more (n = 12) than standard biopsies (n = 5; P = 0.002). A total of 52 lesions were identified by mpMRI (19 low, 18 intermediate, 15 high risk), and mpMRI-assigned risk was a strong predictor of final pathology (area under the curve = 0.81; P < 0.001). When the mean 18F-choline target-to-background ratio was used, the addition of 18F-choline to mpMRI significantly improved the prediction of Gleason ≥ 3 + 4 cancers over mpMRI alone (area under the curve = 0.92; P < 0.001). Conclusion Fusion PET/MRI transrectal ultrasound image registration for targeted prostate biopsies is clinically feasible and accurate. The addition of 18F-choline PET to mpMRI improves the identification of significant prostate cancer.
BackgroundThe utility of 18 F-FDG and 11C-PBR28 to identify aortic wall inflammation associated with abdominal aortic aneurysm (AAA) development was assessed.MethodsUtilizing the porcine pancreatic elastase (PPE) perfusion model, abdominal aortas of male Sprague-Dawley rats were infused with active PPE (APPE, AAA; N = 24) or heat-inactivated PPE (IPPE, controls; N = 16). Aortic diameter increases were monitored by ultrasound (US). Three, 7, and 14 days after induction, APPE and IPPE rats were imaged using 18 F-FDG microPET (approximately 37 MBq IV) and compared with 18 F-FDG autoradiography (approximately 185 MBq IV) performed at day 14. A subset of APPE (N = 5) and IPPE (N = 6) animals were imaged with both 11C-PBR28 (approximately 19 MBq IV) and subsequent 18 F-FDG (approximately 37 MBq IV) microPET on the same day 14 days post PPE exposure. In addition, autoradiography of the retroperitoneal torso was performed after 11C-PBR28 (approximately 1,480 MBq IV) or 18 F-FDG (approximately 185 MBq IV) administration at 14 days post PPE exposure. Aortic wall-to-muscle ratios (AMRs) were determined for microPET and autoradiography. CD68 and translocator protein (TSPO) immunohistochemistry (IHC), as well as TSPO gene expression assays, were performed for validation.ResultsMean 3 (p = 0.009), 7 (p < 0.0001) and 14 (p < 0.0001) days aortic diameter increases were significantly greater for APPE AAAs compared to IPPE controls. No significant differences in 18 F-FDG AMR were determined at days 3 and 7 post PPE exposure; however, at day 14, the mean 18 F-FDG AMR was significantly elevated in APPE AAAs compared to IPPE controls on both microPET (p = 0.0002) and autoradiography (p = 0.02). Similarly, mean 11C-PBR28 AMR was significantly increased at day 14 in APPE AAAs compared to IPPE controls on both microPET (p = 0.04) and autoradiography (p = 0.02). For APPE AAAs, inhomogeneously increased 18 F-FDG and 11C-PBR28 uptake was noted preferentially at the anterolateral aspect of the AAA. Compared to controls, APPE AAAs demonstrated significantly increased macrophage cell counts by CD68 IHC (p = 0.001) as well as increased TSPO staining (p = 0.004). Mean TSPO gene expression for APPE AAAs was also significantly elevated compared to IPPE controls (p = 0.0002).ConclusionRat AAA wall inflammation can be visualized using 18 F-FDG and 11C-PBR28 microPET revealing regional differences of radiotracer uptake on microPET and autoradiography. These results support further investigation of 18 F-FDG and 11C-PBR28 in the noninvasive assessment of human AAA development.Electronic supplementary materialThe online version of this article (doi:10.1186/s13550-014-0020-z) contains supplementary material, which is available to authorized users.
BackgroundThe study aims to assess the accuracy of multi-parametric prostate MRI (mpMRI) and 18F-choline PET/CT in tumor segmentation for clinically significant prostate cancer. 18F-choline PET/CT and 3 T mpMRI were performed in 10 prospective subjects prior to prostatectomy. All subjects had a single biopsy-confirmed focus of Gleason ≥ 3+4 cancer. Two radiologists (readers 1 and 2) determined tumor boundaries based on in vivo mpMRI sequences, with clinical and pathologic data available. 18F-choline PET data were co-registered to T2-weighted 3D sequences and a semi-automatic segmentation routine was used to define tumor volumes. Registration of whole-mount surgical pathology to in vivo imaging was conducted utilizing two ex vivo prostate specimen MRIs, followed by gross sectioning of the specimens within a custom-made 3D-printed plastic mold. Overlap and similarity coefficients of manual segmentations (seg1, seg2) and 18F-choline-based segmented lesions (seg3) were compared to the pathologic reference standard.ResultsAll segmentation methods greatly underestimated the true tumor volumes. Human readers (seg1, seg2) and the PET-based segmentation (seg3) underestimated an average of 79, 80, and 58% of the tumor volumes, respectively. Combining segmentation volumes (union of seg1, seg2, seg3 = seg4) decreased the mean underestimated tumor volume to 42% of the true tumor volume. When using the combined segmentation with 5 mm contour expansion, the mean underestimated tumor volume was significantly reduced to 0.03 ± 0.05 mL (2.04 ± 2.84%). Substantial safety margins up to 11–15 mm were needed to include all tumors when the initial segmentation boundaries were drawn by human readers or the semi-automated 18F-choline segmentation tool. Combining MR-based human segmentations with the metabolic information based on 18F-choline PET reduced the necessary safety margin to a maximum of 9 mm to cover all tumors entirely.ConclusionsTo improve the outcome of focal therapies for significant prostate cancer, it is imperative to recognize the full extent of the underestimation of tumor volumes by mpMRI. Combining metabolic information from 18F-choline with MRI-based segmentation can improve tumor coverage. However, this approach requires confirmation in further clinical studies.
BackgroundWe recently upgraded our [18F]fludeoxyglucose (FDG) production capabilities with the goal of futureproofing our FDG clinical supply, expanding the number of batches of FDG we can manufacture each day, and improving patient throughput in our nuclear medicine clinic. In this paper we report upgrade of the synthesis modules to the GE FASTLab 2 platform (Phase 1) and cyclotron updates (Phase 2) from both practical and regulatory perspectives. We summarize our experience manufacturing FDG on the FASTLab 2 module with a high-yielding self-shielded niobium (Nb) fluorine-18 target.ResultsFollowing installation of Nb targets for production of fluorine-18, a 55 μA beam for 22 min generated 1330 ± 153 mCi of [18F]fluoride. Using these cyclotron beam parameters in combination with the FASTLab 2, activity yields (AY) of FDG were 957 ± 102 mCi at EOS, corresponding to 72% non-corrected AY (n = 235). Our workflow, inventory management and regulatory compliance have been greatly simplified following the synthesis module and cyclotron upgrades, and patient wait times for FDG PET have been cut in half at our nuclear medicine clinic.ConclusionsThe combination of FASTlab 2 and self-shielded Nb fluorine-18 targets have improved our yield of FDG, and enabled reliable and repeatable manufacture of the radiotracer for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.