Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites, hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP (rs1056513) in INADL (p = 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p = 3.7E-08); variants in the APOA5-ZNF259 region associated with triglycerides (p = 2.5-4.8E-08); an intronic variant in PCSK2 associated with total antioxidants (p = 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p = 5.5E-08 to 1.0E-09); a nonsynonymous SNP (p = 1.3E-21), an intronic SNP (p = 3.6E-13) in DARC identified for MCP-1; an intronic variant in ARHGAP11A associated with sleep duration (p = 5.0E-08); and, after adjusting for body weight, variants in MATK for total energy expenditure (p = 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p = 6.0E-08). Unprecedented phenotyping and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of childhood obesity.
Global metabolomic profiling in nonobese and obese children replicates the increased BCAA and acylcarnitine catabolism and changes in nucleotides, lysolipids, and inflammation markers seen in obese adults; however, a strong signature of reduced fatty acid catabolism and increased steroid derivatives may be unique to obese children. Metabolic flexibility in fuel use observed in obese children may occur through the activation of alternative intermediary pathways. Insulin resistance, hyperleptinemia, hypertriglyceridemia, hyperuricemia, and oxidative stress and inflammation evident in obese children are associated with distinct metabolomic profiles.
Offering weight loss classes was a successful method of enticing low-income women to participate in an educational intervention that benefited their children. Overweight and obese mothers who modified their food choices and fat habits made comparable changes for their child.
OBJECTIVE-To quantitate insulin sensitivity in lean and obese nondiabetic baboons and examine the underlying cellular/ molecular mechanisms responsible for impaired insulin action to characterize a baboon model of insulin resistance.RESEARCH DESIGN AND METHODS-Twenty baboons received a hyperinsulinemic-euglycemic clamp with skeletal muscle and visceral adipose tissue biopsies at baseline and at 30 and 120 min after insulin. Genes and protein expression of key molecules involved in the insulin signaling cascade (insulin receptor, insulin receptor substrate-1, p85, phosphatidylinositol 3-kinase, Akt, and AS160) were sequenced, and insulin-mediated changes were analyzed.RESULTS-Overall, baboons show a wide range of insulin sensitivity (6.2 Ϯ 4.8 mg ⅐ kg Ϫ1 ⅐ min Ϫ1 ), and there is a strong inverse correlation between indexes of adiposity and insulin sensitivity (r ϭ Ϫ0.946, P Ͻ 0.001 for % body fat; r ϭ Ϫ0.72, P Ͻ 0.001 for waist circumference). The genes and protein sequences analyzed were found to have ϳ98% identity to those of man. Insulin-mediated changes in key signaling molecules were impaired both in muscle and adipose tissue in obese insulinresistant compared with lean insulin-sensitive baboons. CONCLUSIONS-The obese baboon is a pertinent nonhuman primate model to examine the underlying cellular/molecular mechanisms responsible for insulin resistance and eventual development of type 2 diabetes. Diabetes 57:899-908, 2008 I nsulin resistance is characterized by impaired response of target organs (e.g., skeletal muscle, liver, adipose tissue, and heart) to the physiological effects of insulin and results in impaired glucose metabolism. Insulin resistance is a characteristic feature of many common metabolic disorders, including obesity, type 2 diabetes, hypertension, and dyslipidemia, and of the normal aging process, which collectively constitute risk factors for the development of atherosclerotic cardiovascular disease (1-3).Nonhuman primates occupy a unique place in biomedical and evolutionary research by virtue of their close genetic and physiological similarity to humans and represent a valuable model that has great relevance to the study of human disease. Old World monkeys, which recently (ϳ25 millions years ago in evolutionary terms) diverged from the Hominoidea, have been most extensively studied (4,5). This taxonomic group includes vervet monkeys (Chlorocebus aethiops), rhesus macaques (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis), and baboons (Papio hamadryas) (6). Despite the relevance of primate study to human disease research, there has been a shortage of primates available for biomedical research (7). Baboons and humans share great genetic similarity, with ϳ96% homology evident at the DNA level (8). The sequences of specific genes and the arrangements of genetic loci on chromosomes reflect the close evolutionary relationship between these two species (9). Not surprisingly, nonhuman primates develop many diseases similar to those in man, and they have been used as a model for osteoporos...
A loss-of-function mutation (Q141K, rs2231142) in the ATP-binding cassette, subfamily G, member 2 gene (ABCG2) has been shown to be associated with serum uric acid levels and gout in Asians, Europeans, and European and African Americans; however, less is known about these associations in other populations. Rs2231142 was genotyped in 22,734 European Americans, 9,720 African Americans, 3,849 Mexican Americans, and 3,550 American Indians in the Population Architecture using Genomics and Epidemiology (PAGE) Study (2008-2012). Rs2231142 was significantly associated with serum uric acid levels (P = 2.37 × 10(-67), P = 3.98 × 10(-5), P = 6.97 × 10(-9), and P = 5.33 × 10(-4) in European Americans, African Americans, Mexican Americans, and American Indians, respectively) and gout (P = 2.83 × 10(-10), P = 0.01, and P = 0.01 in European Americans, African Americans, and Mexican Americans, respectively). Overall, the T allele was associated with a 0.24-mg/dL increase in serum uric acid level (P = 1.37 × 10(-80)) and a 1.75-fold increase in the odds of gout (P = 1.09 × 10(-12)). The association between rs2231142 and serum uric acid was significantly stronger in men, postmenopausal women, and hormone therapy users compared with their counterparts. The association with gout was also significantly stronger in men than in women. These results highlight a possible role of sex hormones in the regulation of ABCG2 urate transporter and its potential implications for the prevention, diagnosis, and treatment of hyperuricemia and gout.
Elevated serum uric acid level is associated with obesity, insulin resistance, diabetes, nephropathy, and hypertension. Epidemiologic studies suggest that serum uric acid levels are heritable. We sought to identify chromosomal regions harboring quantitative trait loci that influence serum uric acid in Mexican Americans using data from 644 participants in the San Antonio Family Heart Study. Serum uric acid was found to exhibit significant heritability (0.42) in this population (P ϭ 2 ϫ 10 Ϫ7 ) after accounting for covariate effects. In addition, genetic correlations between serum uric acid and other cardiovascular risk factors, such as body mass index, waist circumference, systolic BP, and pulse pressure, were identified, suggesting that the genes associated with uric acid level are also associated with these phenotypes. Multipoint linkage analysis identified quantitative trait loci with measurable effects on serum uric acid variability. The highest multipoint logarithm of odds score of 3.3 was found at 133 cM on chromosome 6q22-23, a region that also contains genes that seem to influence familial IgA nephropathy, obesity, BP, insulin resistance, and type 2 diabetes. Given the relationship between uric acid level and these conditions, future studies should investigate potential candidate susceptibility genes found in this region.
BackgroundBaboons (Papio hamadryas Sp.) develop features of the cardiometabolic syndrome and represent a clinically-relevant animal model in which to study the aetiology of the disorder. To further evaluate the baboon as a model for the study of the cardiometabolic syndrome, we developed a high sugar high fat diet and hypothesized that it could be used to induce adiposity gain and affect associated circulating biomarkers.MethodsWe developed a diet enriched with monosaccharides and saturated fatty acids that was composed of solid and liquid energy sources. We provided a group of baboons (n = 9) ad libitum access to this diet for 8 weeks. Concurrently, a control group (n = 6) was maintained with ad libitum access to a low sugar low fat baseline diet and normal water for 8 weeks. Body composition was determined by dual-energy X-ray absorptiometry and circulating metabolic biomarkers were measured using standard methodology before and after the 8 week study period.ResultsNeither body composition nor circulating biomarkers changed in the control group. Following the 8 weeks, the intervention group had a significant increase in fat mass (1.71 ± 0.98 vs. 3.23 ± 1.70 kg, p = 0.004), triglyceride (55 ± 13 vs. 109 ± 67 mg/dL, p = 0.006,), and leptin (1.19 ± 1.40 vs. 3.29 ± 2.32 ng/mL, p = 0.001) and a decline in adiponectin concentrations (33530 ± 9744 vs. 23330 ± 7863 ng/mL, p = 0.002). Percentage haemoglobin A1C (4.0 ± 0.3 vs. 6.0 ± 1.4, p = 0.002) also increased in the intervention group.ConclusionsOur findings indicate that when exposed to a high sugar high fat diet, young adult male baboons develop increased body fat and triglyceride concentrations, altered adipokine concentrations, and evidence of altered glucose metabolism. Our findings are in keeping with observations in humans and further demonstrate the potential utility of this highly clinically-relevant animal model for studying diet-induced metabolic dysregulation.
This comprehensive investigation provides strong evidence that MC4R genetic variants are likely to play a functional role in the regulation of weight, not only through energy intake but through energy expenditure.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers