The composition of the human gut microbiota is linked to health and disease, but knowledge of individual microbial species is needed to decipher their biological roles. Despite extensive culturing and sequencing efforts, the complete bacterial repertoire of the human gut microbiota remains undefined. Here we identify 1,952 uncultured candidate bacterial species by reconstructing 92,143 metagenome-assembled genomes from 11,850 human gut microbiomes. These uncultured genomes substantially expand the known species repertoire of the collective human gut microbiota, with a 281% increase in phylogenetic diversity. Although the newly identified species are less prevalent in well-studied populations compared to reference isolate genomes, they improve classification of understudied African and South American samples by more than 200%. These candidate species encode hundreds of newly identified biosynthetic gene clusters and possess a distinctive functional capacity that might explain their elusive nature. Our work expands the known diversity of uncultured gut bacteria, which provides unprecedented resolution for taxonomic and functional characterization of the intestinal microbiota.
Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and well-being1,2. Intestinal colonisation begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla2. Culture independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases1. However, due to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown3. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole genome sequencing, phylogenetic analysis and computational modeling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterised and candidate novel families, genera and species that were archived as pure cultures. Whole genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialised for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a significant proportion of oxygen-sensitive intestinal bacteria can transmit between individuals, impacting microbiota heritability.
Immediately after birth, newborn babies experience rapid colonisation by microorganisms from their mothers and the surrounding environment 1. Diseases in childhood and later in life are potentially mediated through perturbation of the infant gut microbiota colonisations 2. However, the impact of modern clinical practices, such as caesarean section delivery and antibiotic usage, on the earliest stages of gut microbiota acquisition and development during the neonatal period (≤1 month) remains controversial 3,4. Here we report disrupted maternal transmission of Bacteroides strains and high-level colonisation by healthcare-associated opportunistic pathogens, including Enterococcus, Enterobacter and Klebsiella species, in babies delivered by caesarean section (C-section), and to a lesser extent, in those delivered vaginally with maternal antibiotic prophylaxis or not breastfed during the neonatal period. Applying longitudinal sampling and whole-genome shotgun metagenomic analysis on 1,679 gut microbiotas of 772 full term, UK-hospital born babies and mothers, we demonstrate that the mode of delivery is a significant factor impacting gut microbiota composition during the neonatal period that persists into infancy (1 month-1 year). Matched large-scale culturing and whole-genome sequencing (WGS) of over 800 bacterial strains cultured from these babies identified virulence factors and clinically relevant antimicrobial resistance (AMR) in opportunistic pathogens that may predispose to opportunistic infections. Our findings highlight the critical early roles of the local environment (i.e. mother and hospital) in establishing the gut microbiota in very early life, and identifies colonisation with AMR carrying, healthcare-associated opportunistic pathogens as a previously unappreciated risk factor.
Epidemic Clostridium difficile (027/BI/NAP1) rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key moments in the evolutionary history leading to its emergence and subsequent patterns of global spread remain unknown. Here we define the global population structure of C. difficile 027/BI/NAP1 based on whole-genome sequencing and phylogenetic analysis. We demonstrate that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance mutation and a highly-related conjugative transposon. The two epidemic lineages displayed distinct patterns of global spread, and the FQR2 lineage spread more widely leading to healthcare outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid trans-continental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.
Chronic liver disease due to alcohol use disorder contributes markedly to the global burden of disease and mortality 1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-Duan et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.