Among patients with prostate cancer treated with androgen-deprivation therapy, appropriately prescribed exercise is safe and may ameliorate a range of treatment-induced adverse effects. Ongoing research of high methodologic quality is required to consolidate and expand on current knowledge and to allow the development of specific evidence-based exercise prescription recommendations.
Little is known about fatigue and training effects on sarcoplasmic reticulum (SR) function in human muscle, and we therefore investigated this in eight untrained controls (UT), eight endurance-trained (ET), and eight resistance-trained athletes (RT). Muscle biopsies (vastus lateralis) taken at rest and after 50 maximal quadriceps contractions (180 degrees/s, 0.5 Hz) were analyzed for fiber composition, metabolites and maximal SR Ca(2+) release, Ca(2+) uptake, and Ca(2+)-ATPase activity. Fatigue reduced (P < 0.05) Ca(2+) release (42.1 +/- 3.8%, 43.4 +/- 3.9%, 31.3 +/- 6.1%), Ca(2+) uptake (43.0 +/- 5.2%, 34.1 +/- 4.6%, 28.4 +/- 2.8%), and Ca(2+)-ATPase activity (38.6 +/- 4.2%, 48.5 +/- 5.7%, 29.6 +/- 5.0%), in UT, RT, and ET, respectively. These decreases were correlated with fatigability and with type II fiber proportion (P < 0.05). Resting SR measures were correlated with type II proportion (r > or = 0.51, P < 0.05). ET had lower resting Ca(2+) release, Ca(2+) uptake, and Ca(2+)-ATPase (P < 0.05) than UT and RT (P < 0.05), probably because of their lower type II proportion; only minor effects were found in RT. Thus SR function is markedly depressed with fatigue in controls and in athletes, is dependent on fiber type, and appears to be minimally affected by chronic training status.
Background: Osteoporosis and related fragility fractures are a global public health problem in which pharmaceutical agents targeting bone mineral density (BMD) are the first line of treatment. However, pharmaceuticals have no effect on improving other key fracture risk factors, including low muscle strength, power and functional capacity, all of which are associated with an increased risk for falls and fracture, independent of BMD. Targeted exercise training is the only strategy that can simultaneously improve multiple skeletal and fall-related risk factors, but it must be appropriately prescribed and tailored to the desired outcome(s) and the specified target group. Objectives: In this review, we provide an overview of the general principles of training and specific loading characteristics underlying current exercise guidelines for the prevention of osteoporosis, and an update on the latest scientific evidence with regard to the type and dose of exercise shown to positively influence bone mass, structure and strength and reduce fracture risk in postmenopausal women.
Background Anthracycline chemotherapy may be associated with decreased cardiac function and functional capacity measured as the peak oxygen uptake during exercise ([Formula: see text] peak). We sought to determine (a) whether a structured exercise training program would attenuate reductions in [Formula: see text] peak and (b) whether exercise cardiac imaging is a more sensitive marker of cardiac injury than the current standard of care resting left ventricular ejection fraction (LVEF). Methods Twenty-eight patients with early stage breast cancer undergoing anthracycline chemotherapy were able to choose between exercise training (mean ± SD age 47 ± 9 years, n = 14) or usual care (mean ± SD age 53 ± 9 years, n = 14). Measurements performed before and after anthracycline chemotherapy included cardiopulmonary exercise testing to determine [Formula: see text] peak and functional disability ([Formula: see text] peak < 18 ml/min/kg), resting echocardiography (LVEF and global longitudinal strain), cardiac biomarkers (troponin and B-type natriuretic peptide) and exercise cardiac magnetic resonance imaging to determine stroke volume and peak cardiac output. The exercise training group completed 2 × 60 minute supervised exercise sessions per week. Results Decreases in [Formula: see text] peak during chemotherapy were attenuated with exercise training (15 vs. 4% reduction, P = 0.010) and fewer participants in the exercise training group met the functional disability criteria after anthracycline chemotherapy compared with those in the usual care group (7 vs. 50%, P = 0.01). Compared with the baseline, the peak exercise heart rate was higher and the stroke volume was lower after chemotherapy ( P = 0.003 and P = 0.06, respectively). There was a reduction in resting LVEF (from 63 ± 5 to 60 ± 5%, P = 0.002) and an increase in troponin (from 2.9 ± 1.3 to 28.5 ± 22.4 ng/mL, P < 0.0001), but no difference was observed between the usual care and exercise training group. The baseline peak cardiac output was the strongest predictor of functional capacity after anthracycline chemotherapy in a model containing age and resting cardiac function (LVEF and global longitudinal strain). Conclusions The peak exercise cardiac output can identify patients at risk of chemotherapy-induced functional disability, whereas current clinical standards are unhelpful. Functional disability can be prevented with exercise training.
This study investigated whether fatiguing dynamic exercise depresses maximal in vitro Na(+)-K(+)-ATPase activity and whether any depression is attenuated with chronic training. Eight untrained (UT), eight resistance-trained (RT), and eight endurance-trained (ET) subjects performed a quadriceps fatigue test, comprising 50 maximal isokinetic contractions (180 degrees /s, 0.5 Hz). Muscle biopsies (vastus lateralis) were taken before and immediately after exercise and were analyzed for maximal in vitro Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluoroscein phosphatase) activity. Resting samples were analyzed for [(3)H]ouabain binding site content, which was 16.6 and 18.3% higher (P < 0.05) in ET than RT and UT, respectively (UT 311 +/- 41, RT 302 +/- 52, ET 357 +/- 29 pmol/g wet wt). 3-O-methylfluoroscein phosphatase activity was depressed at fatigue by -13.8 +/- 4.1% (P < 0.05), with no differences between groups (UT -13 +/- 4, RT -9 +/- 6, ET -22 +/- 6%). During incremental exercise, ET had a lower ratio of rise in plasma K(+) concentration to work than UT (P < 0.05) and tended (P = 0.09) to be lower than RT (UT 18.5 +/- 2.3, RT 16.2 +/- 2.2, ET 11.8 +/- 0.4 nmol. l(-1). J(-1)). In conclusion, maximal in vitro Na(+)-K(+)-ATPase activity was depressed with fatigue, regardless of training state, suggesting that this may be an important determinant of fatigue.
BackgroundObesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction.MethodsElectronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults.ResultsFourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training.ConclusionAdding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.