Herding of sheep by dogs is a powerful example of one individual causing many unwilling individuals to move in the same direction. Similar phenomena are central to crowd control, cleaning the environment and other engineering problems. Despite single dogs solving this ‘shepherding problem’ every day, it remains unknown which algorithm they employ or whether a general algorithm exists for shepherding. Here, we demonstrate such an algorithm, based on adaptive switching between collecting the agents when they are too dispersed and driving them once they are aggregated. Our algorithm reproduces key features of empirical data collected from sheep–dog interactions and suggests new ways in which robots can be designed to influence movements of living and artificial agents.
A B S T R A C TA revolution in manufacturing systems is underway: substantial recent investment has been directed towards the development of smart manufacturing systems that are able to respond in real time to changes in customer demands, as well as the conditions in the supply chain and in the factory itself. Smart manufacturing is a key component of the broader thrust towards Industry 4.0, and relies on the creation of a bridge between digital and physical environments through Internet of Things (IoT) technologies, coupled with enhancements to those digital environments through greater use of cloud systems, data analytics and machine learning. Whilst these individual technologies have been in development for some time, their integration with industrial systems leads to new challenges as well as potential benefits. In this paper, we explore the challenges faced by those wishing to secure smart manufacturing systems. Lessons from history suggest that where an attempt has been made to retrofit security on systems for which the primary driver was the development of functionality, there are inevitable and costly breaches. Indeed, today's manufacturing systems have started to experience this over the past few years; however, the integration of complex smart manufacturing technologies massively increases the scope for attack from adversaries aiming at industrial espionage and sabotage. The potential outcome of these attacks ranges from economic damage and lost production, through injury and loss of life, to catastrophic nation-wide effects. In this paper, we discuss the security of existing industrial and manufacturing systems, existing vulnerabilities, potential future cyber-attacks, the weaknesses of existing measures, the levels of awareness and preparedness for future security challenges, and why security must play a key role underpinning the development of future smart manufacturing systems.
Collaborative Filtering (CF) algorithms, used to build webbased recommender systems, are often evaluated in terms of how accurately they predict user ratings. However, current evaluation techniques disregard the fact that users continue to rate items over time: the temporal characteristics of the system's top-N recommendations are not investigated. In particular, there is no means of measuring the extent that the same items are being recommended to users over and over again. In this work, we show that temporal diversity is an important facet of recommender systems, by showing how CF data changes over time and performing a user survey. We then evaluate three CF algorithms from the point of view of the diversity in the sequence of recommendation lists they produce over time. We examine how a number of characteristics of user rating patterns (including profile size and time between rating) affect diversity. We then propose and evaluate set methods that maximise temporal recommendation diversity without extensively penalising accuracy.
Flocking is a striking example of collective behaviour that is found in insect swarms, fish schools and mammal herds. A major factor in the evolution of flocking behaviour is thought to be predation, whereby larger and/or more cohesive groups are better at detecting predators (as, for example, in the 'many eyes theory'), and diluting the effects of predators (as in the 'selfish-herd theory') than are individuals in smaller and/or dispersed groups. The former theory assumes that information (passively or actively transferred) can be disseminated more effectively in larger/cohesive groups, while the latter assumes that there are spatial benefits to individuals in a large group, since individuals can alter their spatial position relative to their group-mates and any potential predator, thus reducing their predation risk. We used global positioning system (GPS) data to characterise the response of a group of 'prey' animals (a flock of sheep) to an approaching 'predator' (a herding dog). Analyses of relative sheep movement trajectories showed that sheep exhibit a strong attraction towards the centre of the flock under threat, a pattern that we could re-create using a simple model. These results support the long-standing assertion that individuals can respond to potential danger by moving towards the centre of a fleeing group.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers