Lipodystrophies are a heterogeneous group of human disorders characterized by the anomalous distribution of body fat associated with insulin resistance and altered lipid metabolism. The pathogenetic mechanism of inherited lipodystrophies is not yet clear; at the molecular level they have been linked to mutations of lamin A/C, peroxisome proliferator-activated receptor (PPARgamma) and other seemingly unrelated proteins. In this study, we examined lamin A/C processing in three laminopathies characterized by lipodystrophic phenotypes: Dunnigan type familial partial lipodystrophy, mandibuloacral dysplasia and atypical Werner's syndrome. We found that the lamin A precursor was specifically accumulated in lipodystrophy cells. Pre-lamin A was located at the nuclear envelope and co-localized with the adipocyte transcription factor sterol regulatory element binding protein 1 (SREBP1). Using co-immunoprecipitation experiments, we obtained the first demonstration of an in vivo interaction between SREBP1 and pre-lamin A. Binding of SREBP1 to the lamin A precursor was detected in patient fibroblasts as well as in control fibroblasts forced to accumulate pre-lamin A by farnesylation inhibitors. In contrast, SREBP1 did not interact in vivo with mature lamin A or C in cultured fibroblasts. To gain insights into the effect of pre-lamin A accumulation in adipose tissue, we inhibited lamin A precursor processing in 3T3-L1 pre-adipocytes. Our results show that pre-lamin A sequesters SREBP1 at the nuclear rim, thus decreasing the pool of active SREBP1 that normally activates PPARgamma and causing impairment of pre-adipocyte differentiation. This defect can be rescued by treatment with troglitazone, a known PPARgamma ligand activating the adipogenic program.
Abstract. Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fi broblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fi broblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectifi ed by drug treatment.
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleocytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.
Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals. Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
Reduction of lamin A/C, which is evolutionarily required for the modulation of Polycomb group (PcG) protein–dependent transcriptional repression by sustaining PcG protein nuclear architecture, leads to PcG protein diffusion and to muscle differentiation.
This familial case has the characteristic features of myosclerosis myopathy and carries a homozygous COL6A2 mutation responsible for a peculiar pattern of collagen VI defects. Our study demonstrates that myosclerosis myopathy should be considered a collagen VI disorder allelic to Ullrich congenital muscular dystrophy and Bethlem myopathy.
Pre-lamin A undergoes subsequent steps of post-translational modification at its C-terminus, including farnesylation, methylation, and cleavage by ZMPSTE24 metalloprotease. Here, we show that accumulation of different intermediates of pre-lamin A processing in nuclei, induced by expression of mutated pre-lamin A, differentially affected chromatin organization in human fibroblasts. Unprocessed (non-farnesylated) pre-lamin A accumulated in intranuclear foci, caused the redistribution of LAP2alpha and of the heterochromatin markers HP1alpha and trimethyl-K9-histone 3, and triggered heterochromatin localization in the nuclear interior. In contrast, the farnesylated and carboxymethylated lamin A precursor accumulated at the nuclear periphery and caused loss of heterochromatin markers and Lap2alpha in enlarged nuclei. Interestingly, pre-lamin A bound both HP1alpha and LAP2alpha in vivo, but the farnesylated form showed reduced affinity for HP1alpha. Our data show a link between pre-lamin A processing and heterochromatin remodeling and have major implications for understanding molecular mechanisms of human diseases linked to mutations in lamins.
Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2α distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.