High throughput screening identified 2-acetamido-thiazolylthio acetic ester 1 as an inhibitor of cyclin-dependent kinase 2 (CDK2). Because this compound is inactive in cells and unstable in plasma, we have stabilized it to metabolic hydrolysis by replacing the ester moiety with a 5-ethyl-substituted oxazole as in compound 14. Combinatorial and parallel synthesis provided a rapid analysis of the structure-activity relationship (SAR) for these inhibitors of CDK2, and over 100 analogues with IC(50) values in the 1-10 nM range were rapidly prepared. The X-ray crystallographic data of the inhibitors bound to the active site of CDK2 protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues displayed potent and broad spectrum antiproliferative activity across a panel of tumor cell lines in vitro. In addition, A2780 ovarian carcinoma cells undergo rapid apoptosis following exposure to CDK2 inhibitors of this class. Mechanism of action studies have confirmed that the phosphorylation of CDK2 substrates such as RB, histone H1, and DNA polymerase alpha (p70 subunit) is reduced in the presence of compound 14. Further optimization led to compounds such as water soluble 45, which possesses a favorable pharmacokinetic profile in mice and demonstrates significant antitumor activity in vivo in several murine and human models, including an engineered murine mammary tumor that overexpresses cyclin E, the coactivator of CDK2.
N-Acyl-2-aminothiazoles with nonaromatic acyl side chains containing a basic amine were found to be potent, selective inhibitors of CDK2/cycE which exhibit antitumor activity in mice. In particular, compound 21 [N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide, BMS-387032], has been identified as an ATP-competitive and CDK2-selective inhibitor which has been selected to enter Phase 1 human clinical trials as an antitumor agent. In a cell-free enzyme assay, 21 showed a CDK2/cycE IC(50) = 48 nM and was 10- and 20-fold selective over CDK1/cycB and CDK4/cycD, respectively. It was also highly selective over a panel of 12 unrelated kinases. Antiproliferative activity was established in an A2780 cellular cytotoxicity assay in which 21 showed an IC(50) = 95 nM. Metabolism and pharmacokinetic studies showed that 21 exhibited a plasma half-life of 5-7 h in three species and moderately low protein binding in both mouse (69%) and human (63%) serum. Dosed orally to mouse, rat, and dog, 21 showed 100%, 31%, and 28% bioavailability, respectively. As an antitumor agent in mice, 21 administered at its maximum-tolerated dose exhibited a clearly superior efficacy profile when compared to flavopiridol in both an ip/ip P388 murine tumor model and in a s.c./i.p. A2780 human ovarian carcinoma xenograft model.
High-throughput screening of a subset of the J&J compound library containing the carboxylic acid functional group uncovered a bromophenyl derivative as a moderate potent GPR40 agonist. Chemical elaboration of this bromophenyl led to the discovery of a novel series of GPR40 agonists with submicromolar potency. Among them, 22 and 24 behaved as full agonists when compared to the endogenous GPR40 ligand linolenic acid in a functional Ca+2 flux assay in HEK cells expressing GPR40 receptor. Several GPR40 agonists have also demonstrated the ability to induce glucose-mediated insulin secretion in the mouse MIN6 pancreatic beta-cell line. Our data supports the hypothesis that GPR40 may play an important role in fatty acid-mediated glucose-dependent insulin secretion. Compound 22 exhibited good pharmacokinetic profile in rat and may serve as a good candidate for in vivo study and may help to determine if GPR40 agonists would be beneficial in the treatment of type II diabetes.
Berberine is a substituted dibenzo[a,g]quinolizin-7-ium derivative whose modest antibiotic activity is derived from its disruptive impact on the function of the essential bacterial cell division protein FtsZ. The present study reveals that the presence of a biphenyl substituent at either the 2- or 12-position of structurally-related dibenzo[a,g]quinolizin-7-ium derivatives significantly enhances antibacterial potency versus Staphylococcus aureus and Enterococcus faecalis. Studies with purified S. aureus FtsZ demonstrate that both 2- and 12-biphenyl dibenzo[a,g]quinolizin-7-ium derivatives act as enhancers of FtsZ self-polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.