The in situ electrical conductivity of hydrous garnet samples (Py 20 Alm 76 Grs 4 -Py 73 Alm 14 Grs 13 ) was determined at pressures of 1.0-4.0 GPa and temperatures of 873-1273 K in the YJ-3000t apparatus using a Solartron-1260 impedance/gain-phase analyzer for various chemical compositions and oxygen fugacities. The oxygen fugacity was controlled by five solid-state oxygen buffers ). Experimental results indicate that within a frequency range from 10 -2 to 10 6 Hz, electrical conductivity is strongly dependent on signal frequency. Electrical conductivity shows an Arrhenius increase with temperature. At 2.0 GPa, the electrical conductivity of anhydrous garnet single crystals with various chemical compositions (Py 20 Alm 76 Grs 4 , Py 30 Alm 67 Grs 3 , Py 56 Alm 43 Grs 1 , and Py 73 Alm 14 Grs 13 ) decreases with increasing pyrope component (Py). With increasing oxygen fugacity, the electrical conductivity of dry Py 73 Alm 14 Grs 13 garnet single crystal shows an increase, whereas that of a hydrous sample with 465 ppm water shows a decrease, both following a power law (exponents of 0.061 and -0.071, respectively). With increasing pressure, the electrical conductivity of this hydrous garnet increases, along with the pre-exponential factors, and the activation energy and activation volume of hydrous samples are 0.7731 ± 0.0041 eV and -1.4 ± 0.15 cm 3 /mol, respectively. The results show that small hopping polarons Fe Á
Mg andprotons (H Á ) are the dominant conduction mechanisms for dry and wet garnet single crystals, respectively. Based on these results and the effective medium theory, we established the electrical conductivity of an eclogite model with different mineral contents at high temperatures and high pressures, thereby providing constraints on the inversion of field magnetotelluric sounding results in future studies.
The electrical conductivity of dry polycrystalline olivine compacts (hot-pressed and sintered pellets) was measured at pressures of 1.0–4.0 GPa, at temperatures of 1073–1423 K, and at different oxygen fugacities via the use of a YJ-3000t multi-anvil press. Oxygen fugacity was controlled successfully by means of five solid buffers: Fe3O4-Fe2O3, Ni-NiO, Fe-Fe3O4, Fe-FeO and Mo-MoO2. Within the selected frequency range of 102–106 Hz, the experimental results indicate that the grain interior conduction mechanism is characterized by a semi-circular curve on an impedance diagram. As a function of increasing pressure, the electrical conductivity of polycrystalline olivine compacts decreases, whereas the activation enthalpy and the temperature-independent pre-exponential factors increase slightly. The activation energy and activation volume of polycrystalline olivine compacts were determined to be 141.02±2.53 kJ/mol and 0.25±0.05 cm3/mol, respectively. At a pressure of 4.0 GPa, electrical conductivity was observed to increase as a function of increasing oxygen fugacity, and the relationship between electrical conductivity and oxygen fugacity can be described as log10 (σ) = (2.47±0.085) + (0.096±0.023)×log10fO2 + (–0.55±0.011)/T, which presents the exponential factor q (˜0.096). Our observations demonstrate that the primary conduction mechanism for polycrystalline olivine compacts is a small polaron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.