Due to stringent emission restrictions, modern gas turbines mostly rely on lean premixed combustion. Since this combustion mode is susceptible to thermoacoustic instabilities, there is a need for modeling tools with predictive capabilities. Linear network models are able to predict the occurrence of thermoacoustic instabilities but yield no information on the oscillation amplitude. The prediction of the pulsation levels and hence an estimation whether a certain operating condition has to be avoided is only possible if information on the nonlinear flame response is available. Typically, the flame response shows saturation at high forcing amplitudes. A newly constructed atmospheric test rig, specifically designed for the realization of high excitation amplitudes over a broad frequency range, is used to generate extremely high acoustic forcing power with velocity fluctuations of up to 100% of the mean flow. The test rig consists of a generic combustor with a premixed swirl-stabilized natural gas flame, where the upstream part has a variable length to generate adaptive resonances of the acoustic field. The OH* chemiluminescence response, with respect to velocity fluctuations at the burner is measured for various excitation frequencies and amplitudes. From these measurements, an amplitude dependent flame transfer function is obtained. Phase-averaged OH* pictures are used to identify changes in the flame shape related to saturation mechanisms. For different frequency regimes, different saturation mechanisms are identified.
Due to stringent emission restrictions, modem gas turbines mostly rely on lean premixed combustion. Since this combustion mode is susceptible to thermoacoustic instabilities, there is a need for modeling tools with predictive capabilities. Linear network models are able to predict the occurrence of thermoacoustic instabilities but yield no information on the oscillation amplitude. The prediction of the pulsation levels and hence an estimation whether a certain operating condition has to be avoided is only possible if information on the nonlinear flame response is available. Typically, the flame response shows saturation at high forcing amplitudes. A newly constructed atmospheric test rig, specifically designed for the realization of high excitation amplitudes over a broad frequency range, is used to generate e.xtremely high acoustic forcing power with velocity fluctuations of up to 100% of the mean flow. The test rig consists of a generic combustor with a premixed swirl-stabilized natural gas flame, where the upstream part has a variable length to generate adaptive resonances of the acoustic field. The OH* chemiluminescence response, with respect to velocity fluctuations at the bumer, is measured for various excitation frequencies and amplitudes. From these measurements, an amplitude dependent flame transfer function is obtained. Phase-averaged OH* pictures are used to identify changes in the flame shape related to saturation mechanisms. For different frequency regimes, different saturation mechanisms are identified.
In the current study, the influence of pressure and steam on the emission formation in a premixed natural gas flame is investigated at pressures between 1.5 bar and 9 bar.
A premixed, swirl-stabilized combustor is developed that provides a stable flame up to very high steam contents. Combustion tests are conducted at different pressure levels for equivalence ratios from lean blowout to near-stoichiometric conditions and steam-to-air mass ratios from 0% to 25%.
A reactor network is developed to model the combustion process. The simulation results match the measured NOx and CO concentrations very well for all operating conditions. The reactor network is used for a detailed investigation of the influence of steam and pressure on the NOx formation pathways.
In the experiments, adding 20% steam reduces NOx and CO emissions to below 10 ppm at all tested pressures up to near-stoichiometric conditions. Pressure scaling laws are derived: CO changes with a pressure exponent of approximately −0.5 that is not noticeably affected by the steam. For the NOx emissions, the exponent increases with equivalence ratio from 0.1 to 0.65 at dry conditions. At a steam-to-air mass ratio of 20%, the NOx pressure exponent is reduced to −0.1 to +0.25.
The numerical analysis reveals that steam has a strong effect on the combustion chemistry. The reduction in NOx emissions is mainly caused by lower concentrations of atomic oxygen at steam-diluted conditions, constraining the thermal pathway.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.