The structural eye lens protein γD-crystallin is a major component of cataracts, but its conformation when aggregated is unknown. Using expressed protein ligation, we uniformly 13 C labeled one of the two Greek key domains so that they are individually resolved in two-dimensional (2D) IR spectra for structural and kinetic analysis. Upon acid-induced amyloid fibril formation, the 2D IR spectra reveal that the C-terminal domain forms amyloid β-sheets, whereas the N-terminal domain becomes extremely disordered but lies in close proximity to the β-sheets. Two-dimensional IR kinetics experiments show that fibril nucleation and extension occur exclusively in the C-terminal domain. These results are unexpected because the N-terminal domain is less stable in the monomer form. Isotope dilution experiments reveal that each C-terminal domain contributes two or fewer adjacent β-strands to each β-sheet. From these observations, we propose an initial structural model for γD-crystallin amyloid fibrils. Because only 1 μg of protein is required for a 2D IR spectrum, even poorly expressing proteins can be studied under many conditions using this approach. Thus, we believe that 2D IR and protein ligation will be useful for structural and kinetic studies of many protein systems for which IR spectroscopy can be straightforwardly applied, such as membrane and amyloidogenic proteins. C ataracts are a protein misfolding disease caused by the aggregation of lens crystallin proteins into insoluble deposits that blur vision (1, 2). Because these proteins are not regenerated, damage from UV radiation, oxidative stress, and other chemical modifications accumulates with time (1, 2). As a result, over 50% of the population over 55 develops age-related cataracts (2). Additionally, numerous mutations that destabilize crystallin protein folds are linked to inherited and juvenile-onset cataracts (1). Although the causative factors associated with this disease are known, the structures of the aggregates and the mechanisms by which they form are unknown.Like other protein aggregation diseases such as type II diabetes mellitus and Alzheimer's disease, the molecular structures of proteins in cataracts are difficult to determine. Atomic-level structures have been obtained for some amyloid aggregates of peptides using NMR spectroscopy (3, 4) and X-ray crystallography (5). However, the most widely used techniques for studying aggregate structures and aggregation mechanisms are circular dichroism spectroscopy, fluorescence spectroscopy, and transmission electron microscopy, which provide little detailed structural information. Two-dimensional (2D) IR spectroscopy is emerging as an important tool for studying protein aggregates such as amyloid fibrils (6-8) because it provides bond-by-bond structural resolution on kinetically evolving samples (6, 8-10). Two-dimensional IR spectroscopy probes secondary structure through cross peak couplings and solvent exposure through 2D lineshapes. Its bond-specific structural resolution comes from isotope labeling. Mech...
Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form ␣-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the ␣-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis.
Infrared (IR) and vibrational circular dichroism (VCD) spectra were measured for a series of isotopically ((13)C on two or more amide Cdouble bond]O) labeled, 25 residue, alpha-helical peptides of the sequence Ac-(AAAAK)(4)AAAAY-NH(2) that were also studied in the previous paper. Theoretical IR and VCD simulations were performed for correspondingly isotopically labeled Ac-A(24)-NHCH(3) constrained to an alpha-helical conformation by use of property tensor transfer from density functional theory (DFT) calculations on Ac-A(10)-NHCH(3). The simulations predicted and experiments confirmed that the vibrational coupling constants between i, i + 1 and i, i + 2 residues differ in sign, thus leading to a reversal of the (13)C VCD pattern and explaining the large shift in the (13)C amide I frequency as reported in the previous paper. The sign of the coupling constant remained consistent for larger label separation (with the exception of i, i + 4) and for more labels with uniform separation. Such effects confirm that the isotopically labeled group vibrations are essentially only coupled to each other and are effectively uncoupled from those of the unlabeled groups. This development confirms the utility of isotopic labels for site-specific structural studies with vibrational spectra. Observed spectral effects cannot be explained by considering only transition dipole coupling (TDC) between amide oscillators, particularly for smaller label separations, but the TDC and ab initio predicted couplings roughly converge at large separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.