Sequencing data have been deposited at the European Genome-Phenome Archive (http://www.ebi.ac.uk/ega/) under accession numbers EGAD00001005193. Somatic mutation calls, including single base substitutions, indels and structural variants, from all 632 samples have been deposited on Mendeley Data with the identifier: http://dx.doi.org/10.17632/b53h2kwpyy.2. Code Availability Detailed method and custom R scripts for the analysis of mutational burden in bronchial epithelium are available in Supplementary Code. Other packages used in the analysis are listed below:
Cancer is a leading cause of mortality throughout the world and new treatments are urgently needed. Recent studies suggest that bone marrow-derived mesenchymal stem cells (MSC) home to and incorporate within tumor tissue. We hypothesized that MSCs engineered to produce and deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a transmembrane protein that causes selective apoptosis of tumor cells, would home to and kill cancer cells in a lung metastatic cancer model. Human MSCs were transduced with TRAIL and the IRES-eGFP reporter gene under the control of a tetracycline promoter using a lentiviral vector. Transduced and activated MSCs caused lung (A549), breast (MDAMB231), squamous (H357), and cervical (Hela) cancer cell apoptosis and death in coculture experiments. Subcutaneous xenograft experiments confirmed that directly delivered TRAIL-expressing MSCs were able to significantly reduce tumor growth [0.12 cm 3 (0.04-0.21) versus 0.66 cm 3 (0.21-1.11); P < 0.001]. We then found, using a pulmonary metastasis model, systemically delivered MSCs localized to lung metastases and the controlled local delivery of TRAIL completely cleared the metastatic disease in 38% of mice compared with 0% of controls (P < 0.05). This is the first study to show a significant reduction in metastatic tumor burden with frequent eradication of metastases using inducible TRAIL-expressing MSCs. This has a wide potential therapeutic role, which includes the treatment of both primary tumors and their metastases, possibly as an adjuvant therapy in clearing micrometastatic disease following primary tumor resection. [Cancer Res 2009;69(10):4134-42]
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Background Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as an important tool for the diagnosis and staging of lung cancer but its role in the diagnosis of tuberculous intrathoracic lymphadenopathy has not been established. The aim of this study was to describe the diagnostic utility of EBUS-TBNA in patients with intrathoracic lymphadenopathy due to tuberculosis (TB). Methods 156 consecutive patients with isolated intrathoracic TB lymphadenitis were studied across four centres over a 2-year period. Only patients with a confirmed diagnosis or unequivocal clinical and radiological response to antituberculous treatment during follow-up for a minimum of 6 months were included. All patients underwent routine clinical assessment and a CT scan prior to EBUS-TBNA. Demographic data, HIV status, pathological findings and microbiological results were recorded. Results EBUS-TBNA was diagnostic of TB in 146 patients (94%; 95% CI 88% to 97%). Pathological findings were consistent with TB in 134 patients (86%). Microbiological investigations yielded a positive culture of TB in 74 patients (47%) with a median time to positive culture of 16 days (range 3e84) and identified eight drug-resistant cases (5%). Ten patients (6%) did not have a specific diagnosis following EBUS; four underwent mediastinoscopy which confirmed the diagnosis of TB while six responded to empirical antituberculous therapy. There was one complication requiring an inpatient admission. Conclusions EBUS-TBNA is a safe and effective firstline investigation in patients with tuberculous intrathoracic lymphadenopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.