Modified uridine containing taurine, 5-taurinomethyluridine (τm5U), is found at the anticodon first position of mitochondrial (mt-)transfer RNAs (tRNAs). Previously, we reported that τm5U is absent in mt-tRNAs with pathogenic mutations associated with mitochondrial diseases. However, biogenesis and physiological role of τm5U remained elusive. Here, we elucidated τm5U biogenesis by confirming that 5,10-methylene-tetrahydrofolate and taurine are metabolic substrates for τm5U formation catalyzed by MTO1 and GTPBP3. GTPBP3-knockout cells exhibited respiratory defects and reduced mitochondrial translation. Very little τm5U34 was detected in patient’s cells with the GTPBP3 mutation, demonstrating that lack of τm5U results in pathological consequences. Taurine starvation resulted in downregulation of τm5U frequency in cultured cells and animal tissues (cat liver and flatfish). Strikingly, 5-carboxymethylaminomethyluridine (cmnm5U), in which the taurine moiety of τm5U is replaced with glycine, was detected in mt-tRNAs from taurine-depleted cells. These results indicate that tRNA modifications are dynamically regulated via sensing of intracellular metabolites under physiological condition.
Small-diameter (less than 6 mm in diameter) vascular grafts are highly desirable due to the large demand for surgical revascularization; however, there are no available artificial grafts. Vascular grafts of 1.5 mm diameter prepared by our group with silk fibroin fiber have been proved to be excellent grafts with remarkably high patency and remodeling, based on rat implantation experiment (Enomoto et al., 2010). In this study, a silk fibroin vascular graft with 3 mm diameter which can be used for the coronary arteries or lower extremity arteries is prepared with a double-raschel knitted Bombyx mori silk fiber tube coated with B. mori silk fibroin sponge. Here the silk sponge is prepared from an aqueous solution of the silk fibroin and poly(ethylene) glycol diglycidyl ether as porogen. Sufficient strength, proper elasticity, and protection from loose ends in the implantation process are obtained for the silk fibroin graft; low water permeability and relatively large compliance are also attained. These excellent physical properties make silk fibroin grafts suitable to be implanted in a canine model.
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
As the incidences of cardiovascular diseases have been on the rise in recent years, the need for small-diameter artificial vascular grafts is increasing globally. Although synthetic polymers such as expanded polytetrafluoroethylene or poly(ethylene terephthalate) have been successfully used for artificial vascular grafts ≥6 mm in diameter, they fail at smaller diameters (<6 mm) due to thrombus formation and intimal hyperplasia. Thus, development of vascular grafts for small diameter vessel replacement that are <6 mm in diameter remains a major clinical challenge. Silk fibroin (SF) from Bombyx mori silkworm is well-known as an excellent textile and also has been used as suture material in surgery for more than 2000 years. Many attempts to develop small-diameter SF vascular grafts with <6 mm in diameter have been reported. Here, research and development in small-diameter vascular grafts with SF are reviewed as follows: (1) the heterogeneous structure of SF fiber (Silk II), including the packing arrangements and type II β-turn structure of SF (Silk I*) before spinning; (2) SF modified by transgenic silkworm, which is more suitable for vascular grafts; (3) preparation of small-diameter SF vascular grafts; (4) characterization of SF in the hydrated state, including dynamics of water molecules by nuclear magnetic resonance; and (5) evaluation of the SF grafts by in vivo implantation experiment. According to the findings, SF is a promising material for small-diameter vascular graft development.
Development of a small-diameter artificial vascular graft is urgent because existing materials often occlude within a short time. We have shown that small-diameter vascular graft using Bombyx mori silk fibroin is a potential candidate. Silk fibroin grafts are fabricated by coating silk fibroin on the knit tube prepared from silk fibroin fibers. However, there is a serious problem that the coated silk fibroin portion hardens when alcohol is used for insolubilization of the coated silk fibroin. This hardening prevents the desired biodegradation of the coated silk fibroin. In this study, we improved the silk fibroin coating method of the knit silk fibroin tube. Namely, the silk fibroin sponge coating was performed using glycerin, poly(ethylene glycol diglycidyl ether) or poly(ethylene glycol). In addition, silk fibroin grafts were prepared avoiding dryness during the coating process and were kept in the hydrated state until implantation into the abdominal aorta was complete. After implantation of the hydrated silk fibroin grafts, grafts were taken out at two weeks or three months, and histopathological examination was performed. The grafts coated with three types of silk fibroin sponges had a higher tissue infiltration rate than alcohol-treated grafts and were superior in the formation of smooth muscle cell and vascular endothelial cell remodeling. Biodegradations of the silk fibroin grafts prepared using the three types of silk fibroin sponge coatings and alcohol-treated silk fibroin grafts were also examined with protease XIV in vitro, and the grafts were observed by scanning electron microscopy before and 24 h after biodegradation. Faster biodegradations were observed for grafts coated with the three types of silk fibroin sponges. C solid-state nuclear magnetic resonance studies showed that the conformation of the silk fibroin sponge prepared using porogen was a random coil with high mobility in the hydrated state. We believe that small-diameter silk fibroin vascular grafts coated with quick biodegradable silk fibroin sponges can be developed based on these findings.
Background: The effects of pimobendan on left atrial pressure (LAP) in dogs with mitral valve disease (MR) have not been documented in a quantitative manner.Objective: The objective was to document and study the short-term effects of pimobendan on LAP and echocardiographic parameters in MR dogs.Animals: Eight healthy Beagle dogs weighing 10.0-14.7 kg (3 males and 5 females; aged 2 years) were used. Methods: Experimental, cross-over, and interventional study. Dogs with surgically induced MR received pimobendan at either 0.25 mg/kg or 0.50 mg/kg PO q12h for 7 days and then, after a 7-day wash-out period, the other dosage. LAP was measured for 30 minutes at baseline and again on days 1, 2, 4, and 7 of pimobendan administration.Results: Mean LAP was significantly decreased after the administration of 0.25 mg/kg (15.81 ± 5.44 mmHg to 12.67 ± 5.71 mmHg, P < .001) and 0.50 mg/kg (15.76 ± 5.45 mmHg to 10.77 ± 5.23 mmHg, P < .001). Also, the 0.50 mg/ kg group led to a significantly lower LAP (P < .01) compared with the 0.25 mg/kg group. Significant reduction was seen for the first time 4 days after the administration of 0.25 mg/kg and a day after the administration of 0.50 mg/kg.Conclusions and Clinical Importance: Pimobendan decreased LAP in a dose-dependent manner in dogs with acute MR caused by experimental chordal rupture. This study did not evaluate adverse effects of high-dose pimobendan, and additional studies in clinical patients are warranted.
Background Heart failure (HF) is associated with changes in inflammatory and oxidative stress biomarkers. This study aimed to evaluate the changes of a panel of inflammatory and oxidative stress biomarkers in dogs with different stages of HF and its relation with the severity of the disease and echocardiographic changes. A total of 29 dogs with HF as a result of myxomatous mitral valve degeneration or dilated cardiomyopathy were included and classified as stage-A (healthy), B (asymptomatic dogs), C (symptomatic dogs) and D (dogs with end-stage HF) according to the ACVIM staging system. In these dogs an ecnhocardiographic examination was performed and cytokines, and inflammatory and oxidative stress markers were evaluated in serum. Results KC-like was significantly increased in dogs of stage-C (P < 0.01) and -D (P < 0.05) compared with stage-A and -B. Stage-D dogs showed significantly higher serum CRP and Hp (P < 0.05) but lower serum antioxidant capacity (PON1, TEAC, CUPRAC, and thiol) compared to stage-A and -B (P < 0.05). After the treatment, serum levels of CRP, Hp and KC-like decreased and serum antioxidant levels increased compared to their pre-treatment values. Left ventricular dimension and LA/Ao ratio correlated positively with CRP, MCP-1, and KC-like but negatively with PON1, GM-CSF, IL-7 and antioxidant biomarkers (P < 0.01). Conclusion Our results showed that dogs with advanced HF show increases in positive acute-phase proteins and selected inflammatory cytokines such as KC-like, and decreases in antioxidant biomarkers, indicating that inflammation and oxidative stress act as collaborative partners in the pathogenesis of HF. Some of these biomarkers of inflammation and oxidative stress could have the potential to be biomarkers to monitor the severity of the disease and the effect of treatment.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers