The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.
Summary One of the major challenges for plant scientists is increasing wheat ( Triticum aestivum ) yield potential ( YP ). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency ( RUE ) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE , we applied genome‐wide association study ( GWAS ) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker‐trait association identified 94 SNP s significantly associated with yield, agronomic and phenology‐related traits along with RUE and final biomass ( BM _ PM ) at various growth stages that explained 7%–17% of phenotypic variation. Common SNP markers were identified for grain yield, BM _ PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight ( TGW ), BM _ PM and RUE but lower grain number ( GM 2) and harvest index ( HI ). Our work demonstrates the use of exotic material as a valuable resource to increase YP . It also provides markers for use in marker‐assisted breeding to systematically increase BM _ PM , RUE and TGW and avoid the TGW / GM 2 and BM _ PM / HI trade‐off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study.
Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat—the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a ‘self-poisoning’ scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.
Background Sequence exchange between homologous chromosomes through crossing over and gene conversion is highly conserved among eukaryotes, contributing to genome stability and genetic diversity. A lack of recombination limits breeding efforts in crops; therefore, increasing recombination rates can reduce linkage drag and generate new genetic combinations. Results We use computational analysis of 13 recombinant inbred mapping populations to assess crossover and gene conversion frequency in the hexaploid genome of wheat ( Triticum aestivum ). We observe that high-frequency crossover sites are shared between populations and that closely related parents lead to populations with more similar crossover patterns. We demonstrate that gene conversion is more prevalent and covers more of the genome in wheat than in other plants, making it a critical process in the generation of new haplotypes, particularly in centromeric regions where crossovers are rare. We identify quantitative trait loci for altered gene conversion and crossover frequency and confirm functionality for a novel RecQ helicase gene that belongs to an ancient clade that is missing in some plant lineages including Arabidopsis. Conclusions This is the first gene to be demonstrated to be involved in gene conversion in wheat. Harnessing the RecQ helicase has the potential to break linkage drag utilizing widespread gene conversions. Electronic supplementary material The online version of this article (10.1186/s13059-019-1675-6) contains supplementary material, which is available to authorized users.
SummaryPreviously we extended the utility of mapping‐by‐sequencing by combining it with sequence capture and mapping sequence data to pseudo‐chromosomes that were organized using wheat–Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L. identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping‐by‐synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110 MB NimbleGen capture probe set was used to enrich and sequence a doubled haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo‐chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo‐chromosomes allow us to demonstrate the application of mapping‐by‐sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub‐genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus – defining a smaller genic region than was previously possible; associate the interval with one wheat sub‐genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user‐friendly community resource for phenotype mapping.
22One of the major challenges for plant scientists is increasing wheat (Triticum aestivum) yield 23 potential (YP). A significant bottleneck for increasing YP is achieving increased biomass through 24 optimization of Radiation Use Efficiency (RUE) along the crop cycle. Exotic material such as 25 landraces and synthetic wheat has been incorporated into breeding programs in an attempt to alleviate 26 this, however their contribution to YP is still unclear. To understand the genetic basis of biomass 27 accumulation and RUE we applied genome-wide association study (GWAS) to a panel of 150 elite 28 spring wheat genotypes including many landrace and synthetically derived lines. The panel was 29 evaluated for 31traits over two years under optimal growing conditions and genotyped using the 35K 30Wheat Breeders array. Marker-trait-association identified 94 SNPs significantly associated with 31 yield, agronomic and phenology related traits along with RUE and biomass at various growth stages 32 that explained 7-17 % of phenotypic variation. Common SNP markers were identified for grain 33 yield, final biomass and RUE on chromosomes 5A and 7A. Additionally we show that landrace and 34 synthetic derivative lines showed higher thousand grain weight (TGW), biomass and RUE but lower 35 grain number (GNO) and harvest index (HI). Our work demonstrates the use of exotic material as a 36 valuable resource to increase YP. It also provides markers for use in marker assisted breeding to 37 systematically increase biomass, RUE and TGW and avoid the TGW/GNO and BM/HI trade-off. 38Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and 39 candidate genes for further study. 40 41
Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes) including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with biotechnological potential, such as, CAZYmes that could be used in the production of biofuel.
Wheat has been domesticated into a large number of agricultural environments and has the ability to adapt to diverse environments. To understand this process, we survey genotype, repeat content, and DNA methylation across a bread wheat landrace collection representing global genetic diversity. We identify independent variation in methylation, genotype, and transposon copy number. We show that these, so far unexploited, sources of variation have had a significant impact on the wheat genome and that ancestral methylation states become preferentially "hard coded" as single nucleotide polymorphisms (SNPs) via 5-methylcytosine deamination. These mechanisms also drive local adaption, impacting important traits such as heading date and salt tolerance. Methylation and transposon diversity could therefore be used alongside SNP-based markers for breeding.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers