We demonstrate experimentally the feasibility of continuous variable quantum key distribution (CV-QKD) in dense-wavelength-division multiplexing networks (DWDM), where QKD will typically have to coexist with several co-propagating (forward or backward) C-band classical channels whose launch power is around 0 dBm. We have conducted experimental tests of the coexistence of CV-QKD multiplexed with an intense classical channel, for different input powers and different DWDM wavelengths. Over a 25 km fiber, a CV-QKD operated over the 1530.12 nm channel can tolerate the noise arising from up to 11.5 dBm classical channel at 1550.12 nm in the forward direction (9.7 dBm in backward). A positive key rate (0.49 kbits s −1 ) can be obtained at 75 km with classical channel power of respectively −3 and −9 dBm in forward and backward. Based on these measurements, we have also simulated the excess noise and optimized channel allocation for the integration of CV-QKD in some access networks. We have, for example, shown that CV-QKD could coexist with five pairs of channels (with nominal input powers: 2 dBm forward and 1 dBm backward) over a 25 km WDM-PON network. The obtained results demonstrate the outstanding capacity of CV-QKD to coexist with classical signals of realistic intensity in optical networks.Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.1 The notion of 'distance limitation of QKD ' is, as such, ill-defined. If one wants to establish a comparison between the performance of different QKD systems, a large number of parameters have to be jointly considered, starting with the security model and the secure key rate, together with important more 'practical' parameters that include channel loss, noise environment and the photodetector technology. The numbers we indicate are approximative estimates of the maximum distance at which QKD could be operated with state-of-the art QKD systems, ten years ago [6] and now [7], with a key rate of at least 100 bits s −1 sufficient for practical key renewal, on a standard dark fiber (loss 0.25 dB km −1 ) and for QKD systems operating without He-cooled detectors, under conservative security model (coherent attacks including finite-size effect, even if such analysis was not yet performed 10 years ago). © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft allow to deploy QKD on lit fiber. This would boost the compatibility of quantum communications with existing optical infrastructures and lead to a significant improvement in terms of cost-effectiveness and addressable market for QKD.However, coexistence with intense classical channels raises new challenges for QKD. The optical power used on optical classical channels is orders of magnitude higher than for quantum communication. Multiplexing classical and quantum signals on a single fiber can result in very important additional noise for the quant...
BackgroundHuman papilloma virus (HPV) associated Head and Neck Cancers (HNCs) have generated significant amount of research interest in recent times. Due to high incidence of HNCs and lack of sufficient data on high-risk HPV (hr-HPV) infection from North -East region of India, this study was conceived to investigate hr-HPV infection, its types and its association with life style habits such as tobacco, alcohol consumption etc.MethodsA total of one hundred and six primary HNC tumor biopsy specimens were collected. These samples were analyzed for hr-HPV DNA (13 HPV types) using hybrid capture 2 (HC2) assay and genotyping was done by E6 nested multiplex PCR (NMPCR).ResultsThe presence of hr-HPV was confirmed in 31.13% (n = 33) and 24.52% (n = 26) of the HNC patients by nested multiplex PCR (NMPCR) and HC2 assay respectively. Among hr-HPV positive cases, out of thirteen hr- HPV types analyzed, only two prevalent genotypes, HPV-16 (81.81%) followed by HPV-18 (18.18%) were found. Significant association was observed between hr-HPV infection with alcohol consumption (p <0.001) and tobacco chewing (p = 0.02) in HNC cases. Compared to HPV-18 infection the HPV-16 was found to be significantly associated with tobacco chewing (p = 0.02) habit.ConclusionsOur study demonstrated that tobacco chewing and alcohol consumption may act as risk factors for hr-HPV infection in HNCs from the North-East region of India. This was the first study from North-East India which also assessed the clinical applicability of HC2 assay in HNC patient specimens. We suggest that alcohol, tobacco and hr- HPV infection act synergistically or complement each other in the process of HNC development and progression in the present study population.
Environmentalism has become an important social and corporate issue during the twenty-first century. Consumers are becoming more environmentally conscious and are demanding green products from manufacturers. This has resulted in the emergence of new concepts like green marketing and green consumerism. Over the years various studies have investigated the concept of green consumer behaviour and have listed out factors that work as either barriers or enablers when it comes to consumer adoption of environmentally sustainable products or lifestyles. The present study aims to identify and evaluate the enablers that facilitate consumer adoption of green products. Using Interpretive Structural Modelling a series of initial relationships was established that predict how the joint effect of these enablers affect green consumer behaviour and green product adoption.
We identify and study a new security loophole in continuous-variable quantum key distribution (CV-QKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent state CV-QKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CV-QKD.We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criteria imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible counter-measures against the saturation attack and propose a new countermeasure based on Gaussian post-selection that can be implemented by classical post-processing and may allow to distill secret key when the raw measurement data is partly saturated.
In this study we have constructed a mathematical model of a recently proposed functional model known to be responsible for inducing waking, NREMS and REMS. Simulation studies using this model reproduced sleep-wake patterns as reported in normal animals. The model helps to explain neural mechanism(s) that underlie the transitions between wake, NREMS and REMS as well as how both the homeostatic sleep-drive and the circadian rhythm shape the duration of each of these episodes. In particular, this mathematical model demonstrates and confirms that an underlying mechanism for REMS generation is pre-synaptic inhibition from substantia nigra onto the REM-off terminals that project on REM-on neurons, as has been recently proposed. The importance of orexinergic neurons in stabilizing the wake-sleep cycle is demonstrated by showing how even small changes in inputs to or from those neurons can have a large impact on the ensuing dynamics. The results from this model allow us to make predictions of the neural mechanisms of regulation and patho-physiology of REMS.
MukB is a structural maintenance of chromosome-like protein required for DNA condensation. The complete condensin is a large tripartite complex of MukB, the kleisin, MukF, and an accessory protein, MukE. As found previously, MukB DNA condensation is a stepwise process. We have defined these steps topologically. They proceed first via the formation of negative supercoils that are sequestered by the protein followed by hinge-hinge interactions between MukB dimers that stabilize topologically isolated loops in the DNA. MukB itself is sufficient to mediate both of these topological alterations; neither ATP nor MukEF is required. We show that the MukB hinge region binds DNA and that this region of the protein is involved in sequestration of supercoils. Cells carrying mutations in the MukB hinge that reduce DNA condensation exhibit nucleoid decondensation.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers