Neurospora crassa ARG13 and Saccharomyces cerevisiae ARG11 encode mitochondrial carrier family (MCF) proteins that transport ornithine across the mitochondrial inner membrane. We used their sequences to identify EST candidates that partially encode orthologous mammalian transporters. We thereby identified such a gene (ORNT1) that maps to 13q14 and whose expression, similar to that of other urea cycle (UC) components, was high in liver and varied with changes in dietary protein. ORNT1 expression restores ornithine metabolism in fibroblasts from patients with hyperammonaemia-hyperornithinaemia-homocitrullinuria (HHH) syndrome. In a survey of 11 HHH probands, we identified 3 ORNT1 mutant alleles that account for 21 of 22 possible mutant ORNT1 genes in our patients: F188delta, which is common in French-Canadian HHH patients and encodes an unstable protein; E180K, which encodes a stable, properly targeted protein that is inactive; and a 13q14 microdeletion. Our results show that ORNT1 encodes the mitochondrial ornithine transporter involved in UC function and is defective in HHH syndrome.
Objective-To determine causative mutations and clinical status of seven previously unreported kindreds with TRMA syndrome, (Thiamine Responsive Megaloblastic Anemia, OMIM #249270), a recessive disorder of thiamine transporter Slc19A2.Study design-Genomic DNA was purified from blood, and SLC19A2 mutations were characterized by sequencing PCR-amplified coding regions and intron-exon boundaries of all probands. Compound heterozygotes were further analyzed by sequencing parents, or cloning patient genomic DNA, to ascertain that mutations were in trans.Results-We detected 9 novel SLC19A2 mutations. Of these, five were missense, three nonsense, and one insertion. Five patients from four kindreds were compound heterozygotes, a finding not reported previously for this disorder, which has mostly been found in consanguineous kindreds.Conclusion-SLC19A2 mutation sites in TRMA are heterogeneous; with no regional "hot spots". TRMA can be caused by heterozygous compound mutations; in these cases, the disorder is found in outbred populations. To the extent that heterozygous patients were ascertained at older ages, a plausible explanation is that if one or more allele(s) is not null, partial function might be preserved. Phenotypic variability may lead to underdiagnosis or diagnostic delay, as the average time between the onset of symptoms and diagnosis was 8 years in this cohort.
Emerging phenotypes in long-term survivors with Pompe disease on standard enzyme replacement therapy (ERT) (alglucosidase alfa 20 mg/kg/2 weeks) can include patients with worsening motor function. Whether higher doses of ERT improve skeletal function in these patients has not been systematically studied. This exploratory, randomized, open-label, 52-week study examined the safety and efficacy of 2 ERT regimens of alglucosidase alfa (20 mg/kg/week or 40 mg/kg/2 weeks) in 13 patients with Pompe disease and clinical decline or a lack of improvement on standard ERT: late-onset (n = 4), infantile-onset (n = 9). Cross-reactive immunologic material assay-negative patients were excluded. Eleven of 13 patients completed the study. Trends for improvement were seen in total gross motor function, but not mobility; however, 6 (late-onset, 2; infantile-onset, 4) of 11 patients (55%) who met the entry criteria of motor decline (late-onset, 4; infantile-onset, 7) showed improvement in motor and/or mobility skills. No between-regimen differences in efficacy emerged. Two case studies highlight the benefits of increased ERT dose in patients with Pompe disease experiencing clinical decline. Both alternative regimens were generally well tolerated. This study was limited by the small sample size, which is not uncommon for small clinical studies of rare diseases. Additionally, the study did not include direct assessment of muscle pathology, which may have identified potential causes of decreased response to ERT. Results were inconclusive but suggest that increased ERT dose may be beneficial in some patients with Pompe disease experiencing motor decline. Controlled studies are needed to clarify the benefits and risks of this strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.