Cyclin-dependent kinase 5 (cdk5) and its neuron-specific activator p35 are required for neurite outgrowth and cortical lamination. Proteolytic cleavage of p35 produces p25, which accumulates in the brains of patients with Alzheimer's disease. Conversion of p35 to p25 causes prolonged activation and mislocalization of cdk5. Consequently, the p25/cdk5 kinase hyperphosphorylates tau, disrupts the cytoskeleton and promotes the death (apoptosis) of primary neurons. Here we describe the mechanism of conversion of p35 to p25. In cultured primary cortical neurons, excitotoxins, hypoxic stress and calcium influx induce the production of p25. In fresh brain lysates, addition of calcium can stimulate cleavage of p35 to p25. Specific inhibitors of calpain, a calcium-dependent cysteine protease, effectively inhibit the calcium-induced cleavage of p35. In vitro, calpain directly cleaves p35 to release a fragment with relative molecular mass 25,000. The sequence of the calpain cleavage product corresponds precisely to that of p25. Application of the amyloid beta-peptide A beta(1-42) induces the conversion of p35 to p25 in primary cortical neurons. Furthermore, inhibition of cdk5 or calpain activity reduces cell death in A beta-treated cortical neurons. These observations indicate that cleavage of p35 to p25 by calpain may be involved in the pathogenesis of Alzheimer's disease.
Huntingtin is a 350-kilodalton protein of unknown function that is mutated in Huntington's disease (HD), a neurodegenerative disorder. The mutant protein is presumed to acquire a toxic gain of function that is detrimental to striatal neurons in the brain. However, loss of a beneficial activity of wild-type huntingtin may also cause the death of striatal neurons. Here we demonstrate that wild-type huntingtin up-regulates transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor produced by cortical neurons that is necessary for survival of striatal neurons in the brain. We show that this beneficial activity of huntingtin is lost when the protein becomes mutated, resulting in decreased production of cortical BDNF. This leads to insufficient neurotrophic support for striatal neurons, which then die. Restoring wild-type huntingtin activity and increasing BDNF production may be therapeutic approaches for treating HD.
Minocycline mediates neuroprotection in experimental models of neurodegeneration. It inhibits the activity of caspase-1, caspase-3, inducible form of nitric oxide synthetase (iNOS) and p38 mitogen-activated protein kinase (MAPK). Although minocycline does not directly inhibit these enzymes, the effects may result from interference with upstream mechanisms resulting in their secondary activation. Because the above-mentioned factors are important in amyotrophic lateral sclerosis (ALS), we tested minocycline in mice with ALS. Here we report that minocycline delays disease onset and extends survival in ALS mice. Given the broad efficacy of minocycline, understanding its mechanisms of action is of great importance. We find that minocycline inhibits mitochondrial permeability-transition-mediated cytochrome c release. Minocycline-mediated inhibition of cytochrome c release is demonstrated in vivo, in cells, and in isolated mitochondria. Understanding the mechanism of action of minocycline will assist in the development and testing of more powerful and effective analogues. Because of the safety record of minocycline, and its ability to penetrate the blood-brain barrier, this drug may be a novel therapy for ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.