Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.
The physical climate formulation and simulation characteristics of two new global coupled carbon–climate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory’s previous Climate Model version 2.1 (CM2.1) while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4p1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in El Niño–Southern Oscillation being overly strong in ESM2M and overly weak in ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to total heat content variability given its lack of long-term drift, gyre circulation, and ventilation in the North Pacific, tropical Atlantic, and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to surface circulation given its superior surface temperature, salinity, and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. The overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon–climate models.
The Modeling Eddies in the Southern Ocean (MESO) project uses numerical sensitivity studies to examine the role played by Southern Ocean winds and eddies in determining the density structure of the global ocean and the magnitude and structure of the global overturning circulation. A hemispheric isopycnal-coordinate ocean model (which avoids numerical diapycnal diffusion) with realistic geometry is run with idealized forcing at a range of resolutions from coarse (2°) to eddy-permitting ( 1 ⁄6°). A comparison of coarse resolutions with fine resolutions indicates that explicit eddies affect both the structure of the overturning and the response of the overturning to wind stress changes. While the presence of resolved eddies does not greatly affect the prevailing qualitative picture of the ocean circulation, it alters the overturning cells involving the Southern Ocean transformation of dense deep waters and light waters of subtropical origin into intermediate waters. With resolved eddies, the surface-to-intermediate water cell extends farther southward by hundreds of kilometers and the deep-to-intermediate cell draws on comparatively lighter deep waters. The overturning response to changes in the winds is also sensitive to the presence of eddies. In noneddying simulations, changing the Ekman transport produces comparable changes in the overturning, much of it involving transformation of deep waters and resembling the mean circulation. In the eddypermitting simulations, a significant fraction of the Ekman transport changes are compensated by eddyinduced transport drawing from lighter waters than does the mean overturning. This significant difference calls into question the ability of coarse-resolution ocean models to accurately capture the impact of changes in the Southern Ocean on the global ocean circulation.
The authors describe carbon system formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models (ESM), ESM2M and ESM2G. These models demonstrate good climate fidelity as described in part I of this study while incorporating explicit and consistent carbon dynamics. The two models differ almost exclusively in the physical ocean component; ESM2M uses the Modular Ocean Model version 4.1 with vertical pressure layers, whereas ESM2G uses generalized ocean layer dynamics with a bulk mixed layer and interior isopycnal layers. On land, both ESMs include a revised land model to simulate competitive vegetation distributions and functioning, including carbon cycling among vegetation, soil, and atmosphere. In the ocean, both models include new biogeochemical algorithms including phytoplankton functional group dynamics with flexible stoichiometry. Preindustrial simulations are spun up to give stable, realistic carbon cycle means and variability. Significant differences in simulation characteristics of these two models are described. Because of differences in oceanic ventilation rates, ESM2M has a stronger biological carbon pump but weaker northward implied atmospheric CO 2 transport than ESM2G. The major advantages of ESM2G over ESM2M are improved representation of surface chlorophyll in the Atlantic and Indian Oceans and thermocline nutrients and oxygen in the North Pacific. Improved tree mortality parameters in ESM2G produced more realistic carbon accumulation in vegetation pools. The major advantages of ESM2M over ESM2G are reduced nutrient and oxygen biases in the southern and tropical oceans.
A parameterization for the restratification by finite-amplitude, submesoscale, mixed layer eddies, formulated as an overturning streamfunction, has been recently proposed to approximate eddy fluxes of density and other tracers. Here, the technicalities of implementing the parameterization in the coarseresolution ocean component of global climate models are made explicit, and the primary impacts on model solutions of implementing the parameterization are discussed. Three global ocean general circulation models including this parameterization are contrasted with control simulations lacking the parameterization. The MLE parameterization behaves as expected and fairly consistently in models differing in discretization, boundary layer mixing, resolution, and other parameterizations. The primary impact of the parameterization is a shoaling of the mixed layer, with the largest effect in polar winter regions. Secondary impacts include strengthening the Atlantic meridional overturning while reducing its variability, reducing CFC and tracer ventilation, modest changes to sea surface temperature and air-sea fluxes, and an apparent reduction of sea ice basal melting.
This paper discusses a numerical closure, motivated from the ideas of Smagorinsky, for use with a biharmonic operator. The result is a highly scale-selective, state-dependent friction operator for use in eddy-permitting geophysical fluid models. This friction should prove most useful for large-scale ocean models in which there are multiple regimes of geostrophic turbulence. Examples are provided from primitive equation geopotential and isopycnal-coordinate ocean models.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.