A wire explosion process (WEP) has been used to produce nano aluminium powder in nitrogen, argon and helium atmospheres. The impact of energy deposited into the exploding conductor on the size and shape of the particles was analysed using TEM analysis, which forms the first part of the study. It is observed that the higher the energy deposited, the smaller the particles formed. In the second part, modelling studies were carried out by solving the general dynamic equation through the nodal approach, and the particle size distributions were predicted. It is realized that, at the point of high saturation ratio and nucleation rate, the size of the critical nucleus formed is low. The particle size distribution predicted by the model correlates well with the experimental results. Time-series analysis of particle formation indicates that particles of lower dimensions form and, in the process of coagulation, larger particles are formed. It is realized that the plasma formed during the explosion plays a major role in the particle formation, and the modelling studies confirm that particle formation is not an instantaneous process but requires a certain time period to form stable sizes and shapes.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.