A candidate resonant tetraneutron state is found in the missing-mass spectrum obtained in the double-charge-exchange reaction ^{4}He(^{8}He,^{8}Be) at 186 MeV/u. The energy of the state is 0.83±0.65(stat)±1.25(syst) MeV above the threshold of four-neutron decay with a significance level of 4.9σ. Utilizing the large positive Q value of the (^{8}He,^{8}Be) reaction, an almost recoilless condition of the four-neutron system was achieved so as to obtain a weakly interacting four-neutron system efficiently.
We perform the first direct mass measurements of neutron-rich calcium isotopes beyond neutron number 34 at the RIKEN Radioactive Isotope Beam Factory by using the time-of-flight magnetic-rigidity technique. The atomic mass excesses of ^{55-57}Ca are determined for the first time to be -18650(160), -13510(250), and -7370(990) keV, respectively. We examine the emergence of neutron magicity at N=34 based on the new atomic masses. The new masses provide experimental evidence for the appearance of a sizable energy gap between the neutron 2p_{1/2} and 1f_{5/2} orbitals in ^{54}Ca, comparable to the gap between the neutron 2p_{3/2} and 2p_{1/2} orbitals in ^{52}Ca. For the ^{56}Ca nucleus, an open-shell property in neutrons is suggested.
Excited states in the N ¼ 102 isotones 166 Gd and 164 Sm have been observed following isomeric decay for the first time at RIBF, RIKEN. The half-lives of the isomeric states have been measured to be 950(60) and 600(140) ns for 166 Gd and 164 Sm, respectively. Based on the decay patterns and potential energy surface calculations, including β 6 deformation, a spin and parity of 6 − has been assigned to the isomeric states in both nuclei. Collective observables are discussed in light of the systematics of the region, giving insight into nuclear shape evolution. The decrease in the ground-band energies of 166 Gd and 164 Sm (N ¼ 102) compared to 164 Gd and 162 Sm (N ¼ 100), respectively, presents evidence for the predicted deformed shell closure at N ¼ 100. In the exploration of the nuclear landscape, it is evident that the neutron-rich side of stability contains a vast unknown territory, where approximately half of all the bound nuclides remain to be identified. Furthermore, this is the domain of rapid-neutron-capture (r process) nucleosynthesis, which is poorly understood and yet is key to the creation of chemical elements from iron to uranium (Z ¼ 26-92) in stellar environments [1]. With the advent of the current generation of radioactive-beam facilities, it is now possible to address some of the open questions PRL 113, 262502 (2014) P H Y S I C A L
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.