This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC) with mainstream turbulence intensity (Tu) on a modified vane of the real film-cooled nozzle guide vane (NGV) reported by Timko (NASA CR-168289). Using a 3D conjugate heat transfer (CHT) analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%). The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1) TBC on the pressure side (PS) is more effective than that on the suction side (SS) due to a fewer number of film holes on the SS; (2) for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3) when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20%) the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE) and the exits and downstream of film holes on the SS, this phenomenon is slight.
Abstract:The aim of this paper is to numerically investigate cooling performances of a non-film-cooled turbine vane coated with a thermal barrier coating (TBC) at two turbulence intensities (Tu = 8.3% and 16.6%). Computational fluid dynamics (CFD) with conjugate heat transfer (CHT) analysis is used to predict the surface heat transfer coefficient, overall and TBC effectiveness, as well as internal and average temperatures under a condition of a NASA report provided by Hylton et al. [NASA CR-168015]. The following interesting phenomena are observed: (1) At each Tu, the TBC slightly dampens the heat transfer coefficient in general, and results in the quantitative increment of overall cooling effectiveness about 16-20%, but about 8% at the trailing edge (TE). (2) The protective ability of the TBC increases with Tu in many regions, that is, the leading edge (LE) and its neighborhoods on the suction side (SS), as well as the region from the LE to the front of the TE on the pressure side (PS), because the TBC causes the lower enhancement of the heat transfer coefficient in general at the higher Tu. (3) Considering the internal and average temperatures of the vane coated with two different TBCs, although the vane with the lower thermal conductivity protects more effectively, its role in the TE region reduces more significantly. (4) For both TBCs, the increment of Tu has a relatively small effect on the reduction of the average temperature of the vane.
This is a numerical study of thermal barrier coating (TBC) and turbulence on leading edge (LE) cooling of a guide vane. Numerical results were carried out using 3D CFD with conjugate heat transfer analysis. Important phenomena were revealed. (1) TBC is effective in the LE region especially when free stream turbulence (Tu) increases. (2) At each Tu, TBC near the hub of the vane provides the most effective protection and at the highest Tu, TBC improves overall cooling effectiveness there by about 25%. (3) Near the exits of film hole, TBC may have negative effect, because of heat transfer impedance from the solid structure into the mixing fluid between mainstream and cooling air emitted from film holes.
The thermal efficiency of gas turbine engines increases with turbine inlet temperature (TIT) directly. However, the TIT is limited by the allowable temperature of current blade materials. Film cooling technique is an effective method to maintain turbine vane working smoothly under high TIT conditions. The adiabatic film effectiveness has been widely employed to understand film cooling mechanism. Therefore, the prediction of the adiabatic effectiveness of gas turbine engines under real operating conditions is essential. The showerhead film cooled turbine vane reported by L. P. Timko (NASA CR-168289) is adopted in the present study. There are two rows of film holes on the leading edge, three rows on the pressure side, and two rows on the suction side. All holes are cylindrical, which are placed at an angle of 45 degrees to the vane surface in the span-wise direction. This numerical investigation discusses the influences of free stream turbulence intensity on the adiabatic film effectiveness in the vane leading edge region and its vicinity. Five two-equation turbulence models based on Reynolds Averaged Navier-Stokes (RANS) are employed to predict the adiabatic film effectiveness under real operating conditions at a blowing ratio (BR) of 1.41 and three free stream turbulence intensities (Tu=3.3, 10, and 20%). The adiabatic film effectiveness on the vane surface at 8, 52.5, and 89% span in an x/C range between −0.4 and 0.4 is presented. Obviously, the numerical results predicted by all five models show that on the suction side, the increasing free stream turbulence intensity can reduce film effectiveness except at 8% span. On the pressure side, the RNG k-ε, Realizable k-ε and SST k-ω models predict the same trend of the adiabatic film effectiveness, especially the RNG k-ε and SST k-ω models. Those three models predict that the locally adiabatic film effectiveness (especially near film holes) can be improved when turbulence intensity increases. However, at a span of 89% within the x/C range between −0.4 and −0.2, all k-ε models and SST k-ω model predict that the increase of turbulence intensity can reduce the adiabatic film effectiveness. In addition, the film effectiveness contours show a significant variation of film effectiveness predicted by the five turbulence models on the leading edge when turbulence intensity increases. For the near-pressure side, all models except the Standard k-ω model predict that the high turbulence intensity can reduce the film spreading from film holes dramatically.
Flutter speed of aircraft is very important and needs to be firstly specified before a certification applied for a new aircraft by airworthiness regulator to make sure that the aircraft is free from flutter in its flight envelope. By assuming geometrical and physical parameters known, the speed is usually estimated from deterministic analyses in a design stage. In practice, some parameters are finitely measured by observing, especially for the geometrical parameters, material properties and so on due to the random in nature, which causes uncertainty of information often called uncertainties. The purpose of this paper is to combine reliability analysis and optimum design of aeroelastic aircraft wing. The classical two-dimensional wing with a typical airfoil section is used as an example in this study. To quantify uncertainty in the design of flutter speed, the discrete-time aero-elastic model and worst-case scenario are applied. Furthermore, the comparison between optimum design with/without reliability is provided in this study. The results show the proposed technique leads to the flutter speed being more conservative and realizable compared with the traditional technique.
Thermal parameters are important variables that have great influence on life time of turbine vanes. Therefore, accurate prediction of the thermal parameters is essential. In this study, a numerical approach for conjugate heat transfer (CHT) and computational fluid dynamics (CFD) is used to investigate thermal sensitivity of a transonic guide vane which is fully film-cooled by 199 film holes. Thermal barrier coating (TBC), i.e., the typical TBC and a new one as the candidate TBC, and turbulence intensity (Tu), i.e., Tu=3.3%, 10% and 20%, are two variables used for the present study. At first the external surface temperatures of the vane material are compared. Next, the TBC surface temperatures are considered. Results show the major role of the lower thermal conductivity of TBC which results in the lower and more uniform temperature on the external surface of the vane substrate. Finally, the thermal sensitivity is presented in terms of the percentage reduction of the external surface temperatures of the vane material and the structural temperatures of the vane material at midspan, including the variations of average and maximum vane temperatures. Results show that TBC and Tu have significant effects on the external surface and structural temperatures of the vane substrate. The lower thermal conductivity of TBC leads to the higher difference between the thermal conductivity of the vane substrate and TBC, the reduction of heat transfer and the more uniform temperature within the vane structure. The results also show more effective protection for the average vane temperature from the two TBCs at higher Tus. However, Tu does not significantly affect the reduction of the maximum vane temperature even though the new TBC, which has the very low thermal conductivity, is used.
This study presents a numerical investigation of cooling performances of a modified vane of the film-cooled vane reported by Timko (NASA CR-168289) at different mainstream turbulence intensities (Tus). A 3D conjugate heat transfer (CHT) analysis with SST k-ω turbulence model in FLUENT V.15 is used. Three different mechanisms in CHT analysis, i.e. fluid flow, heat convection between solid surfaces and flowing fluid in an external mainstream and internal cooling passages, and heat conduction within the vane structure, are simultaneously considered. Numerical results are conducted in terms of overall cooling effectiveness at Tu=3.3, 10, and 20%. Comparison between overall cooling effectiveness and film effectiveness under adiabatic assumption is discussed at the three Tus, also. The findings of this research indicate the following phenomena: 1) overall cooling effectiveness decreases with Tu, and this effect on the pressure side (PS) is stronger than that on the suction side (SS) in general. 2) By comparison with adiabatic film effectiveness, the level of overall cooling effectiveness in most regions is higher and more uniform than that of adiabatic film effectiveness for all three Tus. 3) In the leading edge (LE), when Tu increases, near the exits of film holes overall cooling effectiveness deteriorates, but adiabatic film effectiveness improves. Furthermore, a large area with relatively low overall cooling effectiveness is able to move with Tu in the LE region.
Using conjugate heat transfer, thermal analysis of a turbine vane coated with thermal barrier coating (TBC) at a high temperature is presented. Numerical results are carried out at two turbine inlet temperatures (T â) i.e. 783 K (low) and 1566 K (high) under two turbulence intensities (Tus) i.e. 8.3% and 16.6%. The main findings of this research are that for both Tus, the metal surface temperature reduction at the high temperature is higher than that at the low temperature because of the lower heat-flux ratio at the higher temperature. Based on the metal temperature reduction, the increasing inlet temperature has a greater influence than the increasing turbulence intensity. The results also indicate that at T â = 783 K, on the pressure side (PS) the metal surface temperature reduction at Tu = 8.3% is lower than that at Tu = 16.6%, while on the suction side (SS) no significant difference happens when Tu increases. Interestingly, an inverse phenomenon happens for both PS and SS, that is the metal surface temperature reduction at Tu = 8.3% increases above that at Tu = 16.6% when T â increases. This discrepancy may suggest the instability of the surface heat-flux ratio due to complex heat convection at the different inlet temperatures.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers