The current study was conducted to investigate the effect of sodium fluoride (NaF) on the oxidative stress and apoptosis as well as their relationship in the mouse liver by using methods of flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, biochemistry and experimental pathology. 240 four-week-old ICR mice were randomly divided into 4 groups and exposed to different concentration of NaF (0 mg/kg, 12 mg/kg, 24 mg/kg and 48 mg/kg) for a period of 42 days. The results showed that NaF caused oxidative stress and apoptosis. NaF-caused oxidative stress was accompanied by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreasing mRNA expression levels and activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX) and glutathione-s-transferase (GST). NaF induced apoptosis via tumor necrosis factor recpter-1 (TNF-R1) signaling pathway, which was characterized by significantly increasing mRNA and protein expression levels of TNF-R1, Fas associated death domain (FADD), TNFR-associated death domain (TRADD), cysteine aspartate specific protease-8 (caspase-8) and cysteine aspartate specific protease-3 (caspase-3) in dose- and time-dependent manner. Oxidative stress is involved in the process of apoptotic occurrence, and can be triggered by promoting ROS production and reducing antioxidant function. NaF-caused oxidative stress and apoptosis finally impaired hepatic function, which was strongly supported by the histopathological lesions and increased serum alanine amino transferase (ALT), aspartic acid transferase (AST), alkaline phosphatase (AKP) activities and TBIL contents.
It has been reported that excessive intake of fluoride can induce renal lesions. However, its pathogenesis is still less understood. Therefore, this study was conducted to investigate oxidative damage and the relationships between the oxidative damage and renal lesions in fluoride-treated mice by using the methods of histopathology, biochemistry, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). A total of 240 ICR mice were randomly divided into four equal groups (sodium fluoride was given orally at the dose of 0, 12, 24 and 48 mg/kg body weight for 42 days, respectively). We found that fluoride in excess of 12 mg/kg induced renal oxidative damage, which was characterized by increasing the levels of reactive oxygen species (ROS) production and contents of malondialdehyde (MDA) and protein carbonyls (PC), and decreasing the abilities of anti-superoxide anion (ASA) and anti-hydroxyl radical (AHR), glutathione (GSH) content, as well as activities and mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px). Concurrently, fluoride caused degeneration and necrosis of the tubular cells, renal tubular hyaline casts and glomeruli swelling, which were consistent with the alteration of renal function parameters including elevated contents of serum creatinine (Cr), serum uric acid (UA), blood urea nitrogen (BUN), and the activities of urinary N-acetyl-b-D-glucosaminidase (NAG), renal lactate dehydrogenase (LDH), and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and acid phosphatase (ACP) in the kidney. The above-mentioned results showed that fluoride in excess of 12 mg/kg induced renal oxidative damage, which then caused renal lesions and dysfunctions. These findings also clearly demonstrated that oxidative damage is one of the mechanisms of fluoride-induced renal lesions and dysfunctions.
Though fluorine has been shown to induce apoptosis in immune organs in vivo, there has no report on fluoride-induced apoptosis in the cultured lymphocytes. Therefore, this study was conducted with objective of investigating apoptosis induced by sodium fluoride (NaF) and the mechanism behind that in the cultured splenic lymphocytes by flow cytometry, western blot and Hoechst 33258 staining. The splenic lymphocytes were isolated from 3 weeks old male ICR mice and exposed to NaF (0, 100, 200, and 400 μmol/L) in vitro for 24 and 48 h. When compared to control group, flow cytometry assay and Hoechst 33258 staining showed that NaF induced lymphocytes apoptosis, which was promoted by decrease of mitochondria transmembrane potential, up-regulation of Bax, Bak, Fas, FasL, caspase 9, caspase 8, caspase 7, caspase 6 and caspase 3 protein expression (P < 0.05 or P <0.01), and down-regulation of Bcl-2 and Bcl-xL protein expression (P <0.05 or P <0.01). The above-mentioned data suggested that NaF-induced apoptosis in splenic lymphocytes could be mediated by mitochondrial and death receptor pathways.
At present, there are no reports on the relationship between fluoride-induced apoptosis and endoplasmic reticulum (ER) stress (ER stress) in the spleen of human and animals in vivo and in vitro. Therefore, the aim of this study was to define sodium fluoride (NaF)-induced apoptosis mediated by ER stress in the spleen of mice in vivo and in vitro. Apoptosis and expression levels of the ER stress-related proteins were detected by flow cytometry and western blot, respectively. The results showed that NaF treatment increased lymphocytes apoptosis, which was consistent with NaF-caused ER Stress. NaF-caused ER stress was characterized by up-regulating protein expression levels of glucose-regulated protein 78 (BiP) and glucose-regulated protein 94 (GRP94), and by activating unfolded protein response (UPR). The signaling pathway of ER stress-associated apoptosis was activated by up-regulating protein expression levels of cleaved cysteine aspartate specific protease-12 (cleaved caspase-12), growth arrest and DNA damage-inducible gene 153 (Gadd153/CHOP) and phosphorylation of JUN N-terminal kinase (p-JNK). Additionally, our in vitro study found that apoptotic rate was decreased with remarkable down-regulation of the cleaved caspase-12, CHOP, p-JNK after ER stress was inhibited by 4-Phenylbutyric acid (4-PBA) treatment. In conclusion, NaF-induced apoptosis may mediated by ER stress in the spleen.
At present, very limited studies focus on the toxic effect of sodium fluoride (NaF) on splenic development of human and animals in vivo. This study was firstly designed to evaluate the toxic effects of NaF on the splenic development of mice in vivo by observing histopathological lesions, changes of splenic growth index (GI), T and B cells, immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) contents, cytokine protein expression levels, and cell cycle and cyclins/cdks protein expression levels using the methods of pathology, flow cytometry (FCM), western blot (WB), and enzyme-linked immunosorbent assay (ELISA). A total of 240 ICR mice were equally allocated into four groups with intragastric administration of distilled water in the control group and 12, 24, 48 mg/kg NaF solution in the experimental groups for 42 days. The results showed that NaF in 12 mg/kg and over caused the toxic effects on splenic development, which was characterized by reducing growth index and lymphocytes in the white and red pulp histopathologically, increasing cell percentages of the G0/G1 phase and decreasing cell percentages of the S phase, and reducing T cells and B cells as well as IgA, IgG, and IgM contents when compared with those in the control group. Concurrently, cytokines including interleukin-2 (IL-2), transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and cyclin (E/D and CDK2/4) protein expression levels were markedly decreased (P < 0.05 or P < 0.01), and interleukin-10 (IL-10) protein expression levels were significantly increased (P < 0.05 and P < 0.01) in the three NaF-treated groups. Toxic effects finally impaired the splenic cellular immunity and humoral immunity due to the reduction of T and B cell population and activity. Cell cycle arrest is the molecular basis of NaF-caused toxic effects on the splenic development.
Fluoride is widely distributed in the environment and often results in adverse health effects on animals and human beings. It has been proved that fluoride can induce inflammatory responses in vitro. However, very limited reports are focused on fluoride-induced inflammatory responses in vivo. In this study, mice were used to investigate sodium fluoride (NaF) induced renal inflammatory responses and the potential mechanism by using the methods of pathology, biochemistry, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. A total of 240 ICR mice were randomly divided into four equal groups: the control group and three experimental groups (NaF was given orally at the dose of 0, 12, 24 and 48 mg/kg body weight for 42 days, respectively). The results showed that NaF in excess of 12 mg/kg induced the renal histopathological lesions, and inflammatory responses via the activation of nuclear factor-kappa B (NF-κB) signaling pathway and the reduction of anti-inflammatory cytokines expression. The activation of NF-κB signaling pathway was characterized by increasing the nitric oxide (NO) and prostaglandin E2 (PGE2) contents, inducible nitric oxide synthase (iNOS) activities and mRNA expression levels, and the mRNA and protein expression levels of cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8) in three NaF-treated groups. Concurrently, the mRNA and protein expression levels of the anti-inflammatory cytokines including interleukin-4 (IL-4) and interleukin-10 (IL-10) were decreased in three experimental groups when compared with those in the control group.
Background/Aims: Excessive fluoride intake can induce cytotoxicity, DNA damage and cell-cycle changes in many tissues and organs, including the kidney. However, the underlying molecular mechanisms of fluoride-induced renal cell-cycle changes are not well understood at present. In this study, we used a mouse model to investigate how sodium fluoride (NaF) induces cell-cycle changes in renal cells. Methods: Two hundred forty ICR mice were randomly assigned to four equal groups for intragastric administration of NaF (0, 12, 24 and 48 mg/kg body weight/day) for 42 days. Kidneys were taken to measure changes of the cell-cycle at 21 and 42 days of the experiment, using flow cytometry, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot methods. Results: NaF, at more than 12 mg/kg body weight, induced G2/M phase cell-cycle arrest in the renal cells, which was supported by the finding of significantly increased percentages of renal cells in the G2/M phase. We found also that G2/M phase cell-cycle arrest was accompanied by up-regulation of p-ATM, p-Chk2, p-p53, p-Cdc25C, p-CDK1, p21, and Gadd45a protein expression levels; up-regulation of ATM, Chk2, p53, p21, and Gadd45a mRNA expression levels; down-regulation of CyclinB1, mdm2, PCNA protein expression levels; and down-regulation of CyclinB1, CDK1, Cdc25C, mdm2, and PCNA mRNA expression levels. Conclusion: In this mouse model, NaF, at more than 12 mg/ kg, induced G2/M phase cell-cycle arrest by activating the ATM-Chk2-p53/Cdc25C signaling pathway, which inhibits the proliferation of renal cells and development of the kidney. Activation of the ATM-Chk2-p53/Cdc25C signaling pathway is the mechanism of NaF-induced renal G2/M phase cell-cycle arrest in this model.
At present, no reports are focused on fluoride-induced hepatic inflammatory responses in human beings and animals. This study aimed to investigate the mRNA and protein levels of inflammatory cytokines and signaling molecules for evaluating the effect of different doses (0, 12, 24, and 48 mg/kg) of sodium fluoride (NaF) on inflammatory reaction in the mouse liver by using methods of experimental pathology, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. We found that NaF in excess of 12 mg/kg caused the hepatic inflammatory responses, and the results showed that NaF activated the mitogen-activated protein kinases (MAPKs) signaling pathway by markedly increasing (p < 0.01 or p < 0.05) mRNA and protein levels of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinases 1/2 (MEK1/2), extracellular signal-regulated protein kinases 1/2 (Erk1/2), mitogen-activated protein kinase kinases 4/7 (MEK4/7), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and mitogen-activated protein kinase kinases 3/6 (MEK3/6), and the nuclear factor-kappa B (NF-κB) signaling pathway by increasing (p < 0.01 or p < 0.05) the production of NF-κB and inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β) and reducing (p < 0.01 or p < 0.05) the production of the inhibitory kappa B (IκB). Thus, NaF that caused the hepatic inflammatory responses was characterized by increasing (p < 0.01 or p < 0.05) the production of pro-inflammatory mediators such as interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and cyclooxygenase-2 (COX-2) via the activation of MAPKs and NF-κB pathways, and by significantly inhibiting (p < 0.01 or p < 0.05) the production of anti-inflammatory mediators including interleukin-4 (IL-4) and transforming growth factor beta (TGF-β).
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers