Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo. Cellular Senescence: Walking a Line between Life and Death Cell states link both physiological and stress signals to tissue homeostasis and organismal health. In both cases, the outcomes vary and are determined by the signal characteristics (type, magnitude, and duration), spatiotemporal parameters (where and when), and cellular capacity to respond (Gorgoulis et al., 2018). In the case of potentially damaging stress, damage is reversed and the structural and functional integrity of cells restored. Alternatively, damage can be irreversible, and cells activate death mechanisms mainly to restrict the impact on tissue degeneration. Between these extremes, cells can acquire other states, often associated with survival but also with permanent structural and functional changes. An example is the non-proliferative but viable state, distinct from G0 quiescence and terminal differentiation, termed cellular senescence (Rodier and Campisi, 2011). Formally described in 1961 by Hayflick and colleagues, cellular senescence, derived from the latin word senex meaning ''old'' (Hayflick and Moorhead, 1961), was originally observed in normal diploid cells that
Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing1–3. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence4,5, a form of terminal cell cycle arrest associated with pro-inflammatory responses6. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA sensing cGAS-STING pathway, leading to both short-term inflammation to restrain activated oncogene and chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.
In senescent cells, specialized domains of transcriptionally silent senescence-associated heterochromatic foci (SAHF), containing heterochromatin proteins such as HP1, are thought to repress expression of proliferation-promoting genes. We have investigated the composition and mode of assembly of SAHF and its contribution to cell cycle exit. SAHF is enriched in a transcription-silencing histone H2A variant, macroH2A. As cells approach senescence, a known chromatin regulator, HIRA, enters PML nuclear bodies, where it transiently colocalizes with HP1 proteins, prior to incorporation of HP1 proteins into SAHF. A physical complex containing HIRA and another chromatin regulator, ASF1a, is rate limiting for formation of SAHF and onset of senescence, and ASF1a is required for formation of SAHF and efficient senescence-associated cell cycle exit. These data indicate that HIRA and ASF1a drive formation of macroH2A-containing SAHF and senescence-associated cell cycle exit, via a pathway that appears to depend on flux of heterochromatic proteins through PML bodies.
Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy's role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)--the most common mutational event in PDAC--develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.
E2F-1 is a transcription factor suspected of activating genes required for S phase and a known target for the action of RB, the retinoblastoma gene product. Its Induction in quiescent fibroblasts led to S-phase entry followed by apoptosis. E2F-1-mediated apoptosis was suppressed by coexpression of wild-type RB or a transdominant negative mutant species of p53. In contrast, coexpression of a naturally occurring loss-of-function RB mutant or wild-type p53 did not suppress the induction of apoptosis under these conditions. Thus, deregulated E2F-1 activity gives rise to proliferative and apoptotic signals. p53 appears to participate in the execution of the latter.
Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro‐inflammatory and pro‐oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent‐associated changes are dependent on mitochondria, particularly the pro‐inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC‐1β‐dependent mitochondrial biogenesis, contributing to a ROS‐mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC‐1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.
Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents, and is associated with human diseases1–3. While extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known regarding the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery4–6, is present in the nucleus and directly interacts with the nuclear lamina protein Lamin B1, and binds to lamin-associated domains (LADs) on chromatin. This LC3-Lamin B1 interaction does not downregulate Lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated Ras. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers Lamin B1 to the lysosome. Inhibiting autophagy or the LC3-Lamin B1 interaction prevents activated Ras-induced Lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests this new function of autophagy as a guarding mechanism protecting cells from tumorigenesis.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers