In this paper, we report on the first edition of the HEp-2 Cells Classification contest, held at the 2012 edition of the International Conference on Pattern Recognition, and focused on indirect immunofluorescence (IIF) image analysis. The IIF methodology is used to detect autoimmune diseases by searching for antibodies in the patient serum but, unfortunately, it is still a subjective method that depends too heavily on the experience and expertise of the physician. This has been the motivation behind the recent initial developments of computer aided diagnosis systems in this field. The contest aimed to bring together researchers interested in the performance evaluation of algorithms for IIF image analysis: 28 different recognition systems able to automatically recognize the staining pattern of cells within IIF images were tested on the same undisclosed dataset. In particular, the dataset takes into account the six staining patterns that occur most frequently in the daily diagnostic practice: centromere, nucleolar, homogeneous, fine speckled, coarse speckled, and cytoplasmic. In the paper, we briefly describe all the submitted methods, analyze the obtained results, and discuss the design choices conditioning the performance of each method.
The reconstruction of neuron morphology allows to investigate how the brain works, which is one of the foremost challenges in neuroscience. This process aims at extracting the neuronal structures from microscopic imaging data. The great advances in microscopic technologies have made a huge amount of data available at the micro-, or even lower, resolution where manual inspection is time consuming, prone to error and utterly impractical. This has motivated the development of methods to automatically trace the neuronal structures, a task also known as neuron tracing. This paper surveys the latest neuron tracing methods available in the scientific literature as well as a selection of significant older papers to better place these proposals into context. They are categorized into global processing, local processing and meta-algorithm approaches. Furthermore, we point out the algorithmic components used to design each method and we report information on the datasets and the performance metrics used.
Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain.Results: We introduce a fast and scalable algorithm for fully automated cell identification. We obtained the whole digital map of Purkinje cells in mouse cerebellum consisting of a set of 3D cell center coordinates. The method is accurate and we estimated an F1 measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel and containing 4138 manually annotated soma centers.Availability and implementation: Source code and its documentation are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of methods is implemented in Python and makes use of Pylearn2 and modified parts of Scikit-learn. Brain images are available on request.Contact: paolo.frasconi@unifi.itSupplementary information: Supplementary data are available at Bioinformatics online.
Indirect immunofluorescence is currently the recommended method for the detection of antinuclear autoantibodies (ANA). The diagnosis consists of both estimating the fluorescence intensity and reporting the staining pattern for positive wells only. Since resources and adequately trained personnel are not always available for these tasks, an evident medical demand is the development of computer-aided diagnosis (CAD) tools that can support the physician decisions. In this paper, we present a system that classifies the staining pattern of positive wells on the strength of the recognition of their cells. The core of the CAD is a multiple expert system (MES) based on the one-per-class approach devised to label the pattern of single cells. It employs a hybrid approach since each composing binary module is constituted by an ensemble of classifiers combined by a fusion rule. Each expert uses a set of stable and effective features selected from a wide pool of statistical and spectral measurements. In this framework, we present a novel parameter that measures the reliability of the final classification provided by the MES. This feature is used to introduce a reject option that allows to reduce the error rate in the recognition of the staining pattern of the whole well. The approach has been evaluated on 37 wells, for a total of 573 cells. The measured performance shows a low overall error rate ( 2.7%-5.8%), which is below the observed intralaboratory variability.
Background: The recommended method for antinuclear antibodies (ANA) detection is indirect immunofluorescence (IIF). To pursue a high image quality without artefacts and reduce interobserver variability, this study aims at evaluating the reliability of automatically acquired digital images of IIF slides for diagnostic purposes. Methods: Ninety-six sera were screened for ANA by IIF on HEp-2 cells. Two expert physicians looking at both the fluorescence microscope and the digital images on computer monitor performed a blind study to evaluate fluorescence intensity and staining pattern. Cohen's kappa was used as an agreement evaluator between methods and experts. Results: Considering fluorescence intensity, there is a substantial agreement between microscope and monitor analysis in both physicians. Agreement between physicians was substantial at the microscope and perfect at the monitor. Considering IIF pattern, there was a substantial and moderate agreement between microscope and monitor analysis in both physicians. Kappa between physicians was substantial both at the microscope and at the monitor. Conclusions: These preliminary results suggest that digital media is a reliable tool to help physicians in detecting autoantibodies in IIF. Our data represent a first step to validate the use of digital images, thus offering an opportunity for standardizing and automatizing the detection of ANA by IIF. q 2007 Clinical Cytometry
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.