International audienceWe present in this survey new technologies proposed for the evolution of the aeronautical communication infrastructure. Motivated by studies that estimate the growth of air traffic flow, it was decided to develop a future communication infrastructure (FCI) adapted to the future aeronautical scenario. The FCI development involves researchers, industrials, and aeronautical authorities from many countries around the world, and started in 2004. The L-band Digital Aeronautical Communication System (L-DACS) is the part of the FCI that will be in charge of continental communication. The L-DACS is being developed in Europe since 2007 and two candidates were preselected: L-DACS1 and L-DACS2. In this paper, we first describe the motivations of the FCI. We then give an overview of its development activities from 2004 to 2009. After that, we provide some insights about both preselected L-DACS candidates, at their physical and medium access layers. Finally, we address the challenges on the development of the FCI/L-DACS
In this paper, we develop an analytic methodology to determine the best technology to carry the communication between an Unmanned Aerial Vehicle (UAV) and a ground control station (GCS). We assume herein that the UAV is performing its mission under nominal conditions. For this, we identify some relevant criteria that cover most use-cases. We propose a multi-criteria analysis to determine the best technology to carry the radiocommunication between the UAV and the GCS. In this work, we distinguish between the Control and Non-Payload Communication Channel (CNPC) and the Payload Channel. By studying two different missions, we emphasize that the technology assessment results depend on the use-case as well as the UAV scenario, and that for a same scenario the results for CNPC are different from the Payload communication. In this work, we are focused on the precise agriculture (PA) use-case, and the public safety (PS) use case. We present the assessment results in both Visual Line of Sight (VLOS), and Beyond Line of Sight (BVLOS) scenarios. The latter is very interesting because the communication UAV-GCS becomes of critical importance. I. INTRODUCTION AND RELATED WORKS Owing to their compact size, their reduced weight and increasing capabilities, Unmanned Aerial Vehicles (UAV) are nowadays used in a wide range of civil applications. Three typical categories of missions are identified [1]: UAV-aided ubiquitous coverage (e.g. in case of infrastructure damage and crowded areas), UAV-aided relaying (e.g. between frontline and command center for emergency responses), and UAV-aided information dissemination and data collection (e.g. for precision agriculture). To accomplish its mission, the UAV exchanges information with a Ground Control Station (GCS), through two communication channels: The control and non-payload communication (CNPC) channel and the payload channel. Both of them characterize the Air-to-Ground (AG) communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.