Although feed-forward inhibition onto Purkinje cells was first documented forty years ago, we still understand little of how inhibitory interneurons contribute to cerebellar function in behaving animals. Using a mouse line (PC-Δγ2) in which GABAA receptor-mediated synaptic inhibition was selectively removed from Purkinje cells, we examined how feed-forward inhibition from molecular layer interneurons regulates adaptation of the vestibulo-ocular reflex. Whereas impairment of baseline motor performance was relatively mild, the ability to adapt the phase of the vestibulo-ocular reflex and to consolidate gain adaptations, was strongly compromised. Purkinje cells showed abnormal patterns of simple spikes, both during and in the absence of evoked compensatory eye movements. Based on modeling of the experimental data, we propose that feed-forward inhibition, by controlling the fine scale patterns of Purkinje cell activity, enables the induction of plasticity in neurons of the cerebellar and vestibular nuclei.
We previously purified a new esterase from the thermoacidophilic eubacterium Bacillus acidocaldarius whose N-terminal sequence corresponds to an open reading frame (ORF3) reported to show homology with the mammalian hormone-sensitive lipase (HSL)-like group of the esterase\lipase family. To compare the biochemical properties of this thermophilic enzyme with those of the homologous mesophilic and psychrophilic members of the HSL group, an overexpression system in Escherichia coli was established. The protein, expressed in soluble and active form at 10 mg\l E. coli culture, was purified to homogeneity and characterized biochemically. The enzyme, a 34 kDa monomeric protein, was demonstrated to be a Bd-type carboxylesterase (EC 3.1.1.1) on the basis of substrate specificity and the action of inhibitors. Among the p-nitrophenyl (PNP) esters tested the best substrate was PNP-exanoate with K m and k cat values of 11p2 µM (meanpS.D., n l 3) and 6610p880 s −" (meanpS.D., n l 3)
A new gene from the hyperthermophilic archaeon Sulfolobus solfataricus MT4, coding for a putative protein reported to show sequence identity with the phosphotriesterase-related protein family (PHP), was cloned by means of the polymerase chain reaction from the S. solfataricus genomic DNA. In order to analyse the biochemical properties of the protein an overexpression system in Escherichia coli was established. The recombinant protein, expressed in soluble form at 5 mg/l of E. coli culture, was purified to homogeneity and characterized. In contrast with its mesophilic E. coli counterpart that was devoid of any tested activity, the S. solfataricus enzyme was demonstrated to have a low paraoxonase activity. This activity was dependent from metal cations with Co(2+), Mg(2+) and Ni(2+) being the most effective and was thermophilic and thermostable. The enzyme was inactivated with EDTA and o-phenantroline. A reported inhibitor for Pseudomonas putida phosphotriesterase (PTE) had no effect on the S. solfataricus paraoxonase. The importance of a stable paraoxonase for detoxification of chemical warfare agents and agricultural pesticides will be discussed.
Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2), no TARP has been described that can specifically regulate the important class of calciumpermeable (CP-) AMPARs. We examined the stargazin-related protein γ-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. γ-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, γ-5 acts as a TARP and serves this role in Bergmann glia. Whereas, γ-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role γ-5 in regulating the functional contribution of CP-AMPARs.
In mammals, identifying the contribution of specific neurons or networks to behavior is a key challenge. Here we describe an approach that facilitates this process by enabling the rapid modulation of synaptic inhibition in defined cell populations. Binding of zolpidem, a systemically active allosteric modulator that enhances the function of the GABA A receptor, requires a phenylalanine residue (Phe77) in the γ2 subunit. Mice in which this residue is changed to isoleucine are insensitive to zolpidem. By Cre recombinase-induced swapping of the γ2 subunit (that is, exchanging Ile77 for Phe77), zolpidem sensitivity can be restored to GABA A receptors in chosen cell types. We demonstrate the power of this method in the cerebellum, where zolpidem rapidly induces significant motor deficits when Purkinje cells are made uniquely sensitive to its action. This combined molecular and pharmacological technique has demonstrable advantages over targeted cell ablation and will be invaluable for investigating many neuronal circuits.A classical approach to the study of brain function is selective lesioning. Unfortunately, the interpretation of data from such studies can be confounded by compensatory changes, whereby unrelated systems are recruited to alleviate, if only partially, any deficit. A complementary method involves reversibly silencing, albeit with little or no cell-type selectivity, the activity of a pathway or nucleus through cooling or stereotaxic drug administration (for example, see refs. 1,2). Reversible approaches have advantages over permanent lesioning. First, the effects of acute regional inactivation cannot be easily overcome by compensatory changes, because the inactivated system is altered only briefly
SspCA, a novel `extremo-α-carbonic anhydrase' isolated from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1, is an efficient catalyst for the hydration of CO2 and presents exceptional thermostability. Indeed, SspCA retains a high catalytic activity even after being heated to 343-373 K for several hours. Here, the crystallographic structure of this α-carbonic anhydrase (α-CA) is reported and the factors responsible for its function at high temperature are elucidated. In particular, the study suggests that increased structural compactness, together with an increased number of charged residues on the protein surface and a greater number of ionic networks, seem to be the key factors involved in the higher thermostability of this enzyme with respect to its mesophilic homologues. These findings are of extreme importance, since they provide a structural basis for the understanding of the mechanisms responsible for thermal stability in the α-CA family for the first time. The data obtained offer a tool that can be exploited to engineer α-CAs in order to obtain enzymes with enhanced thermostability for use in the harsh conditions of the CO2 capture and sequestration processes.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.