The behavior of heavy/high-Z impurity tungsten (W) in the core of hybrid (high normalized beta β_N plasmas) scenario on EAST with ITER-like divertor (ILD) is analyzed. W accumulation is often observed and seriously degrades the plasma performance (Xiang Gao et al 2017 Nucl. Fusion 57 056021). The dynamics of the W accumulation process of a hybrid discharge are examined considering the concurrent evolution of the background plasma parameters. It turns out that the toroidal rotation and density peaking of the bulk plasma are usually large in the central region, which is particularly prone to the W accumulation. A time slice during the W accumulation phase is modeled, accounting for both neoclassical and turbulent transport components of W, through NEO with poloidal asymmetry effects induced by toroidal rotation, and TGLF, respectively. This modeling reproduces the experimental observations of W accumulation and identifies the neoclassical inward convection/pinch velocity of W due to the large density peaking of the bulk plasma and toroidal rotation in the central region as one of the main reasons for the W accumulation. In addition, the NEO+TGLF+STRAHL modeling can not only predict the core W density profile but also closely reconstruct the radiated information mainly produced by W in the experiment.
The EAST coherent modes (CMs) during the inter-ELM phase are simulated by the electromagnetic six-field two-fluid module in BOUT++ framework. The fluctuation level of the electrostatic potential, electron pressure and density perturbations are comparable to the experiments, and the simulated electrostatic perturbation is around two orders of magnitude larger than the magnetic one in EAST CM. The frequency and poloidal wave number are consistent with experiments in the simulations of EAST CM equilibriums. The energy transfer between three-wave coupling indicates that the energy tends to transfer from medium-n to low-n modes in the early nonlinear phase, and the modes coupling effect in the nonlinear saturation phase is larger than that in the early nonlinear phase. Both the energy transfer and bispectral analysis show that the N i fluctuation tends to generate the 'single-mode' coupling and T e tends to be 'multiple-mode', which indicates that the collapse of the density profile is larger than the electron temperature. The relative phase analysis is applied to evaluate whether the turbulence can extract the energy from density and temperature profiles. The result indicates that the density profile provides much more energy to drive the turbulence than electron temperature. The kinetic and magnetic energy transfer rates are used to understand the instability and turbulence driving mechanisms of the EAST CM. In the linear phase of the nonlinear simulation, the instability is driven by the peeling-ballooning mode and drift-Alfven wave (DAW), and the radial electric field and shear Alfven wave have large suppressing effects. The turbulence of EAST CM is a predominantly electrostatic mode, which corresponds to the Reynolds stress seven times larger than Maxwell stress. In addition, the effect of the electrostatic part in DAW is much larger than the electromagnetic one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.