Two parkinsonian patients who experienced transient hypomanic states when the subthalamic nucleus (STN) was stimulated during postoperative adjustment of the electrical parameters for antiparkinsonian therapy agreed to have the mood disorder reproduced, in conjunction with motor, cognitive, and behavioral evaluations and concomitant functional neuroimaging. During the experiment, STN stimulation again induced a hypomanic state concomitant with activation of cortical and thalamic regions known to process limbic and associative information. This observation suggests that the STN plays a role in the control of a complex behavior that includes emotional as well as cognitive and motor components. The localization of the four contacts of the quadripolar electrode was determined precisely with an interactive brain atlas. The results showed that (i) the hypomanic state was caused only by stimulation through one contact localized in the anteromedial STN; (ii) both this contact and the contact immediately dorsal to it improved the parkinsonian motor state; (iii) the most dorsal and ventral contacts, located at the boundaries of the STN, neither induced the behavioral disorder nor improved motor performance. Detailed analysis of these data led us to consider a model in which the three functional modalities, emotional, cognitive, and motor, are not processed in a segregated manner but can be subtly combined in the small volume of the STN. This nucleus would thus serve as a nexus that integrates the motor, cognitive, and emotional components of behavior and might consequently be an effective target for the treatment of behavioral disorders that combine emotional, cognitive, and motor impairment.basal ganglia ͉ emotion ͉ deep brain stimulation ͉ neuroimaging
Subthalamic nucleus deep brain stimulation improves motor symptoms and quality of life in advanced Parkinson's disease. As after other life-altering surgeries, suicides have been reported following deep brain stimulation for movement disorders. We sought to determine the suicide rate following subthalamic nucleus deep brain stimulation for Parkinson's disease by conducting an international multicentre retrospective survey of movement disorder and surgical centres. We further sought to determine factors associated with suicide attempts through a nested case-control study. In the survey of suicide rate, 55/75 centres participated. The completed suicide percentage was 0.45% (24/5311) and attempted suicide percentage was 0.90% (48/5311). Observed suicide rates in the first postoperative year (263/100,000/year) (0.26%) were higher than the lowest and the highest expected age-, gender- and country-adjusted World Health Organization suicide rates (Standardized Mortality Ratio for suicide: SMR 12.63-15.64; P < 0.001) and remained elevated at the fourth postoperative year (38/100,000/year) (0.04%) (SMR 1.81-2.31; P < 0.05). The excess number of deaths was 13 for the first postoperative year and one for the fourth postoperative year. In the case-control study of associated factors, 10 centres participated. Twenty-seven attempted suicides and nine completed suicides were compared with 70 controls. Postoperative depression (P < 0.001), being single (P = 0.007) and a previous history of impulse control disorders or compulsive medication use (P = 0.005) were independent associated factors accounting for 51% of the variance for attempted suicide risk. Attempted suicides were also associated (P < 0.05) with being younger, younger Parkinson's disease onset and a previous suicide attempt. Completed suicides were associated with postoperative depression (P < 0.001). Postoperative depression remained a significant factor associated with attempted and completed suicides after correction for multiple comparisons using the stringent Bonferroni correction. Mortality in the first year following subthalamic nucleus deep brain stimulation has been reported at 0.4%. Suicide is thus one of the most important potentially preventable risks for mortality following subthalamic nucleus deep brain stimulation for Parkinson's disease. Postoperative depression should be carefully assessed and treated. A multidisciplinary assessment and follow-up is recommended.
Objective: To summarize the 2010 EFNS/MDS-ES evidence-based treatment recommendations for the management of Parkinson's disease (PD). This summary includes the treatment recommendations for early and late PD. Methods: For the 2010 publication, a literature search was undertaken for articles published up to September 2009. For this summary, an additional literature search was undertaken up to December 2010. Classification of scientific evidence and the rating of recommendations were made according to the EFNS guidance. In cases where there was insufficient scientific evidence, a consensus statement ('good practice point') is made. Results and Conclusions:: For each clinical indication, a list of therapeutic interventions is provided, including classification of evidence.
Deep brain stimulation of different targets has been shown to drastically improve symptoms of a variety of neurological conditions. However, the occurrence of disabling side effects may limit the ability to deliver adequate amounts of current necessary to reach the maximal benefit. Computed models have suggested that reduction in electrode size and the ability to provide directional stimulation could increase the efficacy of such therapies. This has never been demonstrated in humans. In the present study, we assess the effect of directional stimulation compared to omnidirectional stimulation. Three different directions of stimulation as well as omnidirectional stimulation were tested intraoperatively in the subthalamic nucleus of 11 patients with Parkinson's disease and in the nucleus ventralis intermedius of two other subjects with essential tremor. At the trajectory chosen for implantation of the definitive electrode, we assessed the current threshold window between positive and side effects, defined as the therapeutic window. A computed finite element model was used to compare the volume of tissue activated when one directional electrode was stimulated, or in case of omnidirectional stimulation. All but one patient showed a benefit of directional stimulation compared to omnidirectional. A best direction of stimulation was observed in all the patients. The therapeutic window in the best direction was wider than the second best direction (P = 0.003) and wider than the third best direction (P = 0.002). Compared to omnidirectional direction, the therapeutic window in the best direction was 41.3% wider (P = 0.037). The current threshold producing meaningful therapeutic effect in the best direction was 0.67 mA (0.3-1.0 mA) and was 43% lower than in omnidirectional stimulation (P = 0.002). No complication as a result of insertion of the directional electrode or during testing was encountered. The computed model revealed a volume of tissue activated of 10.5 mm(3) in omnidirectional mode, compared with 4.2 mm(3) when only one electrode was used. Directional deep brain stimulation with a reduced electrode size applied intraoperatively in the subthalamic nucleus as well as in the nucleus ventralis intermedius of the thalamus significantly widened the therapeutic window and lowered the current needed for beneficial effects, compared to omnidirectional stimulation. The observed side effects related to direction of stimulation were consistent with the anatomical location of surrounding structures. This new approach opens the door to an improved deep brain stimulation therapy. Chronic implantation is further needed to confirm these findings.
BackgroundHuntington's disease (HD) is a fatal inherited neurodegenerative disease, caused by a
Mitochondrial neurogastrointestinal encephalopathy (MNGIE), usually an autosomal-recessive inherited condition, causes gastrointestinal dysmotility, ophthalmoplegia, ptosis, leukoencephalopathy and neuropathy. The chromosome 22 disorder, due to mutations in the nuclear gene TYMP encoding thymidine phosphorylase (TP), leads to the accumulation of thymidine and deoxyuridine, with mitochondrial dysfunction. This report describes a patient with an MNGIE-like syndrome with a heterozygous TYMP mutation who showed marked, but transient improvement postallogeneic haematopoietic stem cell transplantation (HSCT). The patient, showing ptosis and ophthalmoplegia, was initially managed for myasthenia gravis. She developed gastrointestinal symptoms, dysarthria, dysphagia and weakness, and MNGIE was considered due to its low TP levels and improvement after platelet transfusions. She underwent HSCT, with dramatic improvement, but regressed 18 months later despite normal TP levels, platelet counts and full chimerism. MNGIE may encompass a spectrum of disorders. TP deficiency alone is unlikely to explain all clinical signs, and other factors, including the possible development of anti-TP antibodies, which may play a role in the pathophysiology.
Bilateral basal ganglia lesions have been reported to induce a particular form of apathy, termed auto-activation deficit (AAD), principally defined as a loss of self-driven behaviour that is reversible with external stimulation. We hypothesized that AAD reflects a dysfunction of incentive motivation, a process that translates an expected reward (or goal) into behavioural activation. To investigate this hypothesis, we designed a behavioural paradigm contrasting an instructed (externally driven) task, in which subjects have to produce different levels of force by squeezing a hand grip, to an incentive (self-driven) task, in which subjects can win, depending on their hand grip force, different amounts of money. Skin conductance was simultaneously measured to index affective evaluation of monetary incentives. Thirteen AAD patients with bilateral striato-pallidal lesions were compared to thirteen unmedicated patients with Parkinson's; disease (PD), which is characterized by striatal dopamine depletion and regularly associated with apathy. AAD patients did not differ from PD patients in terms of grip force response to external instructions or skin conductance response to monetary incentives. However, unlike PD patients, they failed to distinguish between monetary incentives in their grip force. We conclude that bilateral striato-pallidal damage specifically disconnects motor output from affective evaluation of potential rewards.
To evaluate the effects of the dopamine D2-D3 agonist ropinirole in patients who developed apathy after complete withdrawal from dopaminergic medication following successful subthalamic nucleus (STN) stimulation for advanced Parkinson disease (PD). We assessed apathy (Apathy Scale, Apathy Inventory), mood (Montgomery-Asberg Depression Rating Scale), cognitive functions (Mattis Dementia rating scale, frontal score, executive tests) and motor state (UPDRS-III) in 8 PD patients treated with STN stimulation without dopaminergic treatment and who became apathetic. Assessments were made at baseline and after 6 weeks of ropinirole treatment (7.2 +/- 5.9 mg/d; range 1-18 mg/d). Apathy improved with ropinirole in all but 1 patient (54 +/- 24%; range 0-78%). Mood also improved (75 +/- 31%; range 0-100%), but not in correlation with the change in apathy. Cognitive performance was not modified. Stimulation contacts were located within the STN in all patients except the one who remained apathetic in spite of ropinirole treatment (zona incerta). We suggest that apathy, which was compensated for by an enhancement of D2-D3 receptor stimulation in PD patients with STN stimulation: (1) depends on a dopaminergic deficit in associativo-limbic areas of the brain and (2) can be avoided if a dopaminergic agonist is administered postoperatively.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers