Background-Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified.
Summary Background Branched actin filament networks driving cell motility, endocytosis, and intracellular transport are assembled in seconds by the Arp2/3 complex and must be equally rapidly debranched and turned over. One of the only factors known to promote debranching of actin networks is the yeast homologue of GMF, which is structurally related to the actin filament-severing protein cofilin. However, the molecular mechanism underlying debranching, and whether this activity extends to mammalian GMF, have remained open questions. Results Using scanning mutagenesis and TIRF microscopy, we show that GMF depends on two separate surfaces for debranching. One is analogous to the G-actin and F-actin binding site on cofilin, but we show using fluorescence anisotropy and chemical crosslinking that it instead interacts with actin-related proteins in Arp2/3 complex. The other is analogous to a second F-actin binding site on cofilin, which in GMF appears to contact the first actin subunit in the daughter filament. We further show that GMF binds to Arp2/3 complex with low nanomolar affinity and promotes the open conformation. Finally, we show that this debranching activity and mechanism are conserved for mammalian GMF. Conclusions GMF debranches filaments by a mechanism related to cofilin-mediated severing, but in which GMF has evolved to target molecular junctions between actin-related proteins in Arp2/3 complex and actin subunits in the daughter filament of the branch. This activity and mechanism are conserved in GMF homologues from evolutionarily distant species.
Objective-To examine if the genes encoding the pleckstrin homology domain-containing protein gene (PLEKHA1), hypothetical LOC387715/ARMS2 gene, and HtrA serine peptidase 1 gene (HTRA1) located on the long arm of chromosome 10 (10q26 region) confer risk for neovascular age-related macular degeneration (AMD) in an independent or interactive manner when controlling for complement factor H gene (CFH) genotype and smoking exposure.Design-Retrospective matched-pair case-control study.Participants-Hospital clinic-based sample of 134 unrelated patients with neovascular AMD who have a sibling with normal maculae (268 subjects).Methods-Disease status was ascertained by at least 2 investigators by review of fundus photographs and/or fluorescein angiography according to the Age-Related Eye Disease Study grading scale. If necessary, a home retinal examination was performed (n = 6). A combination of direct sequencing and analysis of 8 highly polymorphic microsatellite markers was used to genotype 33 megabases of the 10q26 region on leukocyte DNA. Smoking history was obtained via a standardized questionnaire and measured in pack-years. The family-based association test, haplotype analysis, multiple conditional logistic regression, and linkage analysis were used to determine significant associations. Main Outcome Measure-Neovascular AMD status.Results-Of the 23 variants we identified in the 10q26 region, 6 were significant. Four of the 6 were novel and included 2 genotypes that reduced risk of AMD. Many single-nucleotide polymorphisms (SNPs), including the previously reported variants rs10490924 (hypothetical NIH Public Access Author ManuscriptOphthalmology. Author manuscript; available in PMC 2014 November 24. Published in final edited form as:Ophthalmology. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptLOC387715/ARMS2) and rs11200638 (HTRA1), defined 2 significant haplotypes associated with increased risk of neovascular AMD. The coding HTRA1 SNP rs2293870, not part of the significant haplotypes containing rs10490924 and rs11200638, showed as strong an association with increased susceptibility to neovascular AMD. Linkage analysis supported our findings of SNP association (P<10 −15 ). No significant interactions were found between any of the SNPs in the 10q26 and smoking or between these SNPs and CFH genotype.Conclusions-Independent of CFH genotype or smoking history, an individual's risk of AMD could be increased or decreased, depending on their genotype or haplotype in the 10q26 region.Neovascular age-related macular degeneration (AMD) is characterized by the growth of abnormal new blood vessels beneath the retina that can cause severe and rapid vision loss due to hemorrhage and exudation. It is this more advanced form that is responsible for the majority of debilitating vision loss due to AMD. In the United States, it is predicted that about 3 million individuals over the age of 50 will have advanced AMD in at least one eye by 2020. 1Current diagnostic methods focus on the detection of ne...
The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in the 59-UTR and coding region of the predicted Ps1 gene. To generate a stable allelic series, we employed genetic screens and identified 83 germinally heritable ps1 excision alleles. Molecular characterization of these excision alleles revealed a position-dependent bias in excision allele frequencies and the predominance of 7-and 8-bp footprint products. In total, 19 unique ps1 excision alleles were generated in this study, including several that resulted in weak mutant phenotypes. The analysis of footprint alleles suggests a model of Ac excision in maize that is consistent with recent in vitro studies of hAT element excision. Importantly, the genetic and molecular methods developed in this study can be extended to generate novel allelic variation at any Ac-tagged gene in the genome.
SUMMARY Lamellipodia are dynamic actin-rich cellular extensions, which drive advancement of the leading edge during cell migration [1–3]. Lamellipodia undergo periodic extension/retraction cycles [4–8], but the molecular mechanisms underlying these dynamics and their role in cell migration have remained obscure. We show that gliamaturation factor (GMF), which is an Arp2/3 complex inhibitor and actin filament debranching factor [9, 10], regulates lamellipodial protrusion dynamics in living cells. In cultured S2R+ cells, GMF silencing resulted in an increase in the width of lamellipodial actin filament arrays. Importantly, live-imaging of mutant Drosophila egg chambers revealed that the dynamics of actin-rich protrusions in migrating border cells are diminished in the absence of GMF. Consequently, velocity of border cell clusters undergoing guided migration was reduced in GMF mutant flies. Furthermore, genetic studies demonstrated that GMF cooperates with the Drosophila homologue of Aip1 (flare) in promoting disassembly of Arp2/3-nucleated actin filament networks and driving border cell migration. These data suggest that GMF functions in vivo to promote the disassembly of Arp2/3-nucleated actin filament arrays, making an important contribution to cell migration within a three-dimensional tissue environment.
Glia maturation factor (GMF) has recently been established as a regulator of the actin cytoskeleton with a unique role in remodeling actin network architecture. Conserved from yeast to mammals, GMF is one of five members of the ADF-H family of actin regulatory proteins, which includes ADF/cofilin, Abp1/Drebrin, Twinfilin, and Coactosin. GMF does not bind actin, but instead binds the Arp2/3 complex with high affinity. Through this association, GMF catalyzes the debranching of actin filament networks and inhibits actin nucleation by Arp2/3 complex. Here, we discuss GMF's emerging role in controlling actin filament spatial organization and dynamics underlying cell motility, endocytosis, and other biological processes. Further, we attempt to reconcile these functions with its earlier characterization as a cell differentiation factor.
A novel functional role for WAVE1 is found that is lacking in N-WASP and WAVE2. Through its unique WH2 domain, WAVE1 dramatically reduces the rate of actin filament elongation independently of its interactions with the Arp2/3 complex. These findings help explain how cells build actin networks with distinct geometries and growth rates.
We report a case of an 11-year old Caucasian female with nyctalopia since early childhood with an atypical clinical presentation of fundus albipunctatus (FA), and a novel mutation in the RDH5 gene. In addition to white spots in the fundus, patchy areas of hypopigmentation were noted, which were reminiscent for an early stage of retinitis punctata albescens (RPA). Electroretinographic testing (ERG) showed a non-detectable, dark adapted, isolated rod response and a markedly decreased combined rod and cone response to an achromatic stimulus. After patching one eye overnight, both the isolated rod response and combined rod and cone scotopic white flash response were normal. A Goldmann-Weekers dark adapted final threshold response was also within the normal range. The patient showed a previously reported heterozygous mutation for Gly238Trp, and a novel Arg157Gln mutation. Genetic testing and extended ERG and psychophysical testing may be necessary to diagnose FA from early stages of progressive RPA.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers