SummaryBackground18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016.MethodsUsing all available data sources, the India State-level Disease Burden Initiative estimated burden (metrics were deaths, disability-adjusted life-years [DALYs], prevalence, incidence, and life expectancy) from 333 disease conditions and injuries and 84 risk factors for each state of India from 1990 to 2016 as part of GBD 2016. We divided the states of India into four epidemiological transition level (ETL) groups on the basis of the ratio of DALYs from communicable, maternal, neonatal, and nutritional diseases (CMNNDs) to those from non-communicable diseases (NCDs) and injuries combined in 2016. We assessed variations in the burden of diseases and risk factors between ETL state groups and between states to inform a more specific health-system response in the states and for India as a whole.FindingsDALYs due to NCDs and injuries exceeded those due to CMNNDs in 2003 for India, but this transition had a range of 24 years for the four ETL state groups. The age-standardised DALY rate dropped by 36·2% in India from 1990 to 2016. The numbers of DALYs and DALY rates dropped substantially for most CMNNDs between 1990 and 2016 across all ETL groups, but rates of reduction for CMNNDs were slowest in the low ETL state group. By contrast, numbers of DALYs increased substantially for NCDs in all ETL state groups, and increased significantly for injuries in all ETL state groups except the highest. The all-age prevalence of most leading NCDs increased substantially in India from 1990 to 2016, and a modest decrease was recorded in the age-standardised NCD DALY rates. The major risk factors for NCDs, including high systolic blood pressure, high fasting plasma glucose, high total cholesterol, and high body-mass index, increased from 1990 to 2016, with generally higher levels in higher ETL states; ambient air pollution also increased and was highest in the low ETL group. The incidence rate of the leading causes of injuries also increased from 1990 to 2016. The five leading individual causes of DALYs in India in 2016 were ischaemic heart disease, chronic obstructive pulmonary disease, diarrhoeal diseases, lower respiratory infections, and cerebrovascular disease; and the five leading risk factors for DALYs in 2016 were child and maternal malnutrition, air pollution, dietary risks, high systolic blood pressure, and high fasting plasma glucose. Behind these broad trends many variations existed between the ETL state groups and between states within the ETL groups. Of the ten le...
Summary Background Air pollution is a major planetary health risk, with India estimated to have some of the worst levels globally. To inform action at subnational levels in India, we estimated the exposure to air pollution and its impact on deaths, disease burden, and life expectancy in every state of India in 2017. Methods We estimated exposure to air pollution, including ambient particulate matter pollution, defined as the annual average gridded concentration of PM 2.5 , and household air pollution, defined as percentage of households using solid cooking fuels and the corresponding exposure to PM 2.5 , across the states of India using accessible data from multiple sources as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. The states were categorised into three Socio-demographic Index (SDI) levels as calculated by GBD 2017 on the basis of lag-distributed per-capita income, mean education in people aged 15 years or older, and total fertility rate in people younger than 25 years. We estimated deaths and disability-adjusted life-years (DALYs) attributable to air pollution exposure, on the basis of exposure–response relationships from the published literature, as assessed in GBD 2017; the proportion of total global air pollution DALYs in India; and what the life expectancy would have been in each state of India if air pollution levels had been less than the minimum level causing health loss. Findings The annual population-weighted mean exposure to ambient particulate matter PM 2·5 in India was 89·9 μg/m 3 (95% uncertainty interval [UI] 67·0–112·0) in 2017. Most states, and 76·8% of the population of India, were exposed to annual population-weighted mean PM 2·5 greater than 40 μg/m 3 , which is the limit recommended by the National Ambient Air Quality Standards in India. Delhi had the highest annual population-weighted mean PM 2·5 in 2017, followed by Uttar Pradesh, Bihar, and Haryana in north India, all with mean values greater than 125 μg/m 3 . The proportion of population using solid fuels in India was 55·5% (54·8–56·2) in 2017, which exceeded 75% in the low SDI states of Bihar, Jharkhand, and Odisha. 1·24 million (1·09–1·39) deaths in India in 2017, which were 12·5% of the total deaths, were attributable to air pollution, including 0·67 million (0·55–0·79) from ambient particulate matter pollution and 0·48 million (0·39–0·58) from household air pollution. Of these deaths attributable to air pollution, 51·4% were in people younger than 70 years. India contributed 18·1% of the global population but had 26·2% of the global air pollution DALYs in 2017. The ambient particulate matter pollution DALY rate was highest in the north Indian states of Uttar Pradesh, Haryana, Delhi, Punjab, a...
SummaryBackgroundThe burden of cardiovascular diseases is increasing in India, but a systematic understanding of its distribution and time trends across all the states is not readily available. In this report, we present a detailed analysis of how the patterns of cardiovascular diseases and major risk factors have changed across the states of India between 1990 and 2016.MethodsWe analysed the prevalence and disability-adjusted life-years (DALYs) due to cardiovascular diseases and the major component causes in the states of India from 1990 to 2016, using all accessible data sources as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016. We placed states into four groups based on epidemiological transition level (ETL), defined using the ratio of DALYs from communicable diseases to those from non-communicable diseases and injuries combined, with a low ratio denoting high ETL and vice versa. We assessed heterogeneity in the burden of major cardiovascular diseases across the states of India, and the contribution of risk factors to cardiovascular diseases. We calculated 95% uncertainty intervals (UIs) for the point estimates.FindingsOverall, cardiovascular diseases contributed 28·1% (95% UI 26·5–29·1) of the total deaths and 14·1% (12·9–15·3) of the total DALYs in India in 2016, compared with 15·2% (13·7–16·2) and 6·9% (6·3–7·4), respectively, in 1990. In 2016, there was a nine times difference between states in the DALY rate for ischaemic heart disease, a six times difference for stroke, and a four times difference for rheumatic heart disease. 23·8 million (95% UI 22·6–25·0) prevalent cases of ischaemic heart disease were estimated in India in 2016, and 6·5 million (6·3–6·8) prevalent cases of stroke, a 2·3 times increase in both disorders from 1990. The age-standardised prevalence of both ischaemic heart disease and stroke increased in all ETL state groups between 1990 and 2016, whereas that of rheumatic heart disease decreased; the increase for ischaemic heart disease was highest in the low ETL state group. 53·4% (95% UI 52·6–54·6) of crude deaths due to cardiovascular diseases in India in 2016 were among people younger than 70 years, with a higher proportion in the low ETL state group. The leading overlapping risk factors for cardiovascular diseases in 2016 included dietary risks (56·4% [95% CI 48·5–63·9] of cardiovascular disease DALYs), high systolic blood pressure (54·6% [49·0–59·8]), air pollution (31·1% [29·0–33·4]), high total cholesterol (29·4% [24·3–34·8]), tobacco use (18·9% [16·6–21·3]), high fasting plasma glucose (16·7% [11·4–23·5]), and high body-mass index (14·7% [8·3–22·0]). The prevalence of high systolic blood pressure, high total cholesterol, and high fasting plasma glucose increased generally across all ETL state groups from 1990 to 2016, but this increase was variable across the states; the prevalence of smoking decreased during this period in all ETL state groups.InterpretationThe burden from the leading cardiovascular diseases in India—ischaemic heart disease and strok...
SummaryBackgroundPrevious efforts to report estimates of cancer incidence and mortality in India and its different parts include the National Cancer Registry Programme Reports, Sample Registration System cause of death findings, Cancer Incidence in Five Continents Series, and GLOBOCAN. We present a comprehensive picture of the patterns and time trends of the burden of total cancer and specific cancer types in each state of India estimated as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 because such a systematic compilation is not readily available.MethodsWe used all accessible data from multiple sources, including 42 population-based cancer registries and the nationwide Sample Registration System of India, to estimate the incidence of 28 types of cancer in every state of India from 1990 to 2016 and the deaths and disability-adjusted life-years (DALYs) caused by them, as part of GBD 2016. We present incidence, DALYs, and death rates for all cancers together, and the trends of all types of cancers, highlighting the heterogeneity in the burden of specific types of cancers across the states of India. We also present the contribution of major risk factors to cancer DALYs in India.Findings8·3% (95% uncertainty interval [UI] 7·9–8·6) of the total deaths and 5·0% (4·6–5·5) of the total DALYs in India in 2016 were due to cancer, which was double the contribution of cancer in 1990. However, the age-standardised incidence rate of cancer did not change substantially during this period. The age-standardised cancer DALY rate had a 2·6 times variation across the states of India in 2016. The ten cancers responsible for the highest proportion of cancer DALYs in India in 2016 were stomach (9·0% of the total cancer DALYs), breast (8·2%), lung (7·5%), lip and oral cavity (7·2%), pharynx other than nasopharynx (6·8%), colon and rectum (5·8%), leukaemia (5·2%), cervical (5·2%), oesophageal (4·3%), and brain and nervous system (3·5%) cancer. Among these cancers, the age-standardised incidence rate of breast cancer increased significantly by 40·7% (95% UI 7·0–85·6) from 1990 to 2016, whereas it decreased for stomach (39·7%; 34·3–44·0), lip and oral cavity (6·4%; 0·4–18·6), cervical (39·7%; 26·5–57·3), and oesophageal cancer (31·2%; 27·9–34·9), and leukaemia (16·1%; 4·3–24·2). We found substantial inter-state heterogeneity in the age-standardised incidence rate of the different types of cancers in 2016, with a 3·3 times to 11·6 times variation for the four most frequent cancers (lip and oral, breast, lung, and stomach). Tobacco use was the leading risk factor for cancers in India to which the highest proportion (10·9%) of cancer DALYs could be attributed in 2016.InterpretationThe substantial heterogeneity in the state-level incidence rate and health loss trends of the different types of cancer in India over this 26-year period should be taken into account to strengthen infrastructure and human resources for cancer prevention and control at both the national and state levels. These efforts should focu...
SummaryBackgroundThe burden of diabetes is increasing rapidly in India but a systematic understanding of its distribution and time trends is not available for every state of India. We present a comprehensive analysis of the time trends and heterogeneity in the distribution of diabetes burden across all states of India between 1990 and 2016.MethodsWe analysed the prevalence and disability-adjusted life-years (DALYs) of diabetes in the states of India from 1990 to 2016 using all available data sources that could be accessed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, and assessed heterogeneity across the states. The states were placed in four groups based on epidemiological transition level (ETL), defined on the basis of the ratio of DALYs from communicable diseases to those from non-communicable diseases and injuries combined, with a low ratio denoting high ETL and vice versa. We assessed the contribution of risk factors to diabetes DALYs and the relation of overweight (body-mass index 25 kg/m2 or more) with diabetes prevalence. We calculated 95% uncertainty intervals (UIs) for the point estimates.FindingsThe number of people with diabetes in India increased from 26·0 million (95% UI 23·4–28·6) in 1990 to 65·0 million (58·7–71·1) in 2016. The prevalence of diabetes in adults aged 20 years or older in India increased from 5·5% (4·9–6·1) in 1990 to 7·7% (6·9–8·4) in 2016. The prevalence in 2016 was highest in Tamil Nadu and Kerala (high ETL) and Delhi (higher-middle ETL), followed by Punjab and Goa (high ETL) and Karnataka (higher-middle ETL). The age-standardised DALY rate for diabetes increased in India by 39·6% (32·1–46·7) from 1990 to 2016, which was the highest increase among major non-communicable diseases. The age-standardised diabetes prevalence and DALYs increased in every state, with the percentage increase among the highest in several states in the low and lower-middle ETL state groups. The most important risk factor for diabetes in India was overweight to which 36·0% (22·6–49·2) of the diabetes DALYs in 2016 could be attributed. The prevalence of overweight in adults in India increased from 9·0% (8·7–9·3) in 1990 to 20·4% (19·9–20·8) in 2016; this prevalence increased in every state of the country. For every 100 overweight adults aged 20 years or older in India, there were 38 adults (34–42) with diabetes, compared with the global average of 19 adults (17–21) in 2016.InterpretationThe increase in health loss from diabetes since 1990 in India is the highest among major non-communicable diseases. With this increase observed in every state of the country, and the relative rate of increase highest in several less developed low ETL states, policy action that takes these state-level differences into account is needed urgently to control this potentially explosive public health situation.FundingBill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.