Cancer metastasis can occur at early stages of tumor development due to facilitative alterations in the tumor microenvironment. Although imaging techniques have considerably improved our understanding of metastasis, early events remain challenging to study due to the small numbers of malignant cells involved that are often undetectable. Using a novel zebrafish model to investigate this process, we discovered that tumor-associated macrophages (TAM) acted to facilitate metastasis by binding tumor cells and mediating their intravasation. Mechanistic investigations revealed that IL6 and TNFa promoted the ability of macrophages to mediate this step. M2 macrophages were particularly potent when induced by IL4, IL10, and TGFb. In contrast, IFNg-lipopolysaccharide-induced M1 macrophages lacked the capability to function in the same way in the model. Confirming these observations, we found that human TAM isolated from primary breast, lung, colorectal, and endometrial cancers exhibited a similar capability in invasion and metastasis. Taken together, our work shows how zebrafish can be used to study how host contributions can facilitate metastasis at its earliest stages, and they reveal a new macrophage-dependent mechanism of metastasis with possible prognostic implications. Cancer Res; 75(2); 306-15. Ó2014 AACR.
Cold- and β3-adrenoceptor agonist-induced sympathetic activation leads to angiogenesis and UCP1-dependent thermogenesis in mouse brown and white adipose tissues. Here we show that endothelial production of PDGF-CC during white adipose tissue (WAT) angiogenesis regulates WAT browning. We find that genetic deletion of endothelial VEGFR2, knockout of the Pdgf-c gene or pharmacological blockade of PDGFR-α impair the WAT-beige transition. We further show that PDGF-CC stimulation upregulates UCP1 expression and acquisition of a beige phenotype in differentiated mouse WAT-PDGFR-α+ progenitor cells, as well as in human WAT-PDGFR-α+ adipocytes, supporting the physiological relevance of our findings. Our data reveal a paracrine mechanism by which angiogenic endothelial cells modulate adipocyte metabolism, which may provide new targets for the treatment of obesity and related metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.