The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
Summary To characterize somatic alterations in colorectal carcinoma (CRC), we conducted genome-scale analysis of 276 samples, analyzing exome sequence, DNA copy number, promoter methylation, mRNA and microRNA expression. A subset (97) underwent low-depth-of-coverage whole-genome sequencing. 16% of CRC have hypermutation, three quarters of which have the expected high microsatellite instability (MSI), usually with hypermethylation and MLH1 silencing, but one quarter has somatic mismatch repair gene mutations. Excluding hypermutated cancers, colon and rectum cancers have remarkably similar patterns of genomic alteration. Twenty-four genes are significantly mutated. In addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9, and FAM123B/WTX. Recurrent copy number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive CRC and important role for MYC-directed transcriptional activation and repression.
BACKGROUND Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders. METHODS We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients. RESULTS We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic pheno-types. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had auto-somal recessive disease, and 9 had X-linked disease. A total of 4 probands received two nonoverlapping molecular diagnoses, which potentially challenged the clinical diagnosis that had been made on the basis of history and physical examination. A total of 83% of the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be causative in the same genes and in different genes responsible for genetically heterogeneous disorders. CONCLUSIONS Whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition. (Funded by the National Human Genome Research Institute.)
Summary Genomic structural variants (SVs) are abundant in humans, differing from other variation classes in extent, origin, and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (i.e., copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analyzing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.
We developed a method, ChIP-sequencing (ChIP-seq), combining chromatin immunoprecipitation (ChIP) and massively parallel sequencing to identify mammalian DNA sequences bound by transcription factors in vivo. We used ChIP-seq to map STAT1 targets in interferon-gamma (IFN-gamma)-stimulated and unstimulated human HeLa S3 cells, and compared the method's performance to ChIP-PCR and to ChIP-chip for four chromosomes. By ChIP-seq, using 15.1 and 12.9 million uniquely mapped sequence reads, and an estimated false discovery rate of less than 0.001, we identified 41,582 and 11,004 putative STAT1-binding regions in stimulated and unstimulated cells, respectively. Of the 34 loci known to contain STAT1 interferon-responsive binding sites, ChIP-seq found 24 (71%). ChIP-seq targets were enriched in sequences similar to known STAT1 binding motifs. Comparisons with two ChIP-PCR data sets suggested that ChIP-seq sensitivity was between 70% and 92% and specificity was at least 95%.
IMPORTANCE Clinical whole-exome sequencing is increasingly used for diagnostic evaluation of patients with suspected genetic disorders. OBJECTIVE To perform clinical whole-exome sequencing and report (1) the rate of molecular diagnosis among phenotypic groups, (2) the spectrum of genetic alterations contributing to disease, and (3) the prevalence of medically actionable incidental findings such as FBN1 mutations causing Marfan syndrome. DESIGN, SETTING, AND PATIENTS Observational study of 2000 consecutive patients with clinical whole-exome sequencing analyzed between June 2012 and August 2014. Whole-exome sequencing tests were performed at a clinical genetics laboratory in the United States. Results were reported by clinical molecular geneticists certified by the American Board of Medical Genetics and Genomics. Tests were ordered by the patient’s physician. The patients were primarily pediatric (1756 [88%]; mean age, 6 years; 888 females [44%], 1101 males [55%], and 11 fetuses [1% gender unknown]), demonstrating diverse clinical manifestations most often including nervous system dysfunction such as developmental delay. MAIN OUTCOMES AND MEASURES Whole-exome sequencing diagnosis rate overall and by phenotypic category, mode of inheritance, spectrum of genetic events, and reporting of incidental findings. RESULTS A molecular diagnosis was reported for 504 patients (25.2%) with 58% of the diagnostic mutations not previously reported. Molecular diagnosis rates for each phenotypic category were 143/526 (27.2%; 95% CI, 23.5%–31.2%) for the neurological group, 282/1147 (24.6%; 95% CI, 22.1%–27.2%) for the neurological plus other organ systems group, 30/83 (36.1%; 95% CI, 26.1%–47.5%) for the specific neurological group, and 49/244 (20.1%; 95% CI, 15.6%–25.8%) for the nonneurological group. The Mendelian disease patterns of the 527 molecular diagnoses included 280 (53.1%) autosomal dominant, 181 (34.3%) autosomal recessive (including 5 with uniparental disomy), 65 (12.3%) X-linked, and 1 (0.2%) mitochondrial. Of 504 patients with a molecular diagnosis, 23 (4.6%) had blended phenotypes resulting from 2 single gene defects. About 30% of the positive cases harbored mutations in disease genes reported since 2011. There were 95 medically actionable incidental findings in genes unrelated to the phenotype but with immediate implications for management in 92 patients (4.6%), including 59 patients (3%) with mutations in genes recommended for reporting by the American College of Medical Genetics and Genomics. CONCLUSIONS AND RELEVANCE Whole-exome sequencing provided a potential molecular diagnosis for 25% of a large cohort of patients referred for evaluation of suspected genetic conditions, including detection of rare genetic events and new mutations contributing to disease. The yield of whole-exome sequencing may offer advantages over traditional molecular diagnostic approaches in certain patients.
We previously reported Keck telescope observations suggesting a smaller value of the fine structure constant, α, at high redshift. New Very Large Telescope (VLT) data, probing a different direction in the universe, shows an inverse evolution; α increases at high redshift. Although the pattern could be due to as yet undetected systematic effects, with the systematics as presently understood the combined dataset fits a spatial dipole, significant at the 4.2σ level, in the direction right ascension 17.5±0.9 hours, declination −58±9 degrees. The independent VLT and Keck samples give consistent dipole directions and amplitudes, as do high and low redshift samples. A search for systematics, using observations duplicated at both telescopes, reveals none so far which emulate this result.PACS numbers: 06.20. Jr, 95.30.Dr, 95.30.Sf, 98.62.Ra, 98.80.Es, 98.80.Jk Quasar spectroscopy as a test of fundamental physics.-The vast light-travel times to distant quasars allow us to probe physics at high redshift. The relative wavenumbers, ω z , of atomic transitions detected at redshift z = λ obs /λ lab − 1, can be compared with laboratory values, ω 0 , via the relationshipwhere the coefficient Q measures the sensitivity of a given transition to a change in α. The variation in both magnitude and sign of Q for different transitions is a significant advantage of the Many Multiplet method [1, 2], helping to combat potential systematics.The first application of this method, 30 measurements of ∆α/α = (α z − α 0 ) /α 0 , indicated a smaller α at high redshift at the 3σ significance level. By 2004 we had made 143 measurements of α covering a wide redshift range, using further data from the Keck telescope obtained by 3 separate groups, supporting our earlier findings, that towards that general direction in the universe at least, α may have been smaller at high redshift, at the 5σ level [3][4][5]. The constant factor at that point was (undesirably) the telescope and spectrograph.New data from the VLT.-We have now analysed a large dataset from a different observatory, the VLT. Full details and searches for systematic errors will be given elsewhere [6,7]. Here we summarize the evidence for spatial variation in α emerging from the combined Keck+VLT samples. Quasar spectra, obtained from the ESO Science Archive, were selected, prioritising primarily by expected signal to noise but with some preference given to higher redshift objects and to objects giving more extensive sky coverage. The ESO midas pipeline was used for the first data reduction step, including wavelength calibration, although enhancements were made to derive a more robust and accurate wavelength solution from an improved selection of thorium-argon calibration lamp emission lines [8]. Echelle spectral orders from several exposures of a given quasar were combined using uves popler [9]. A total of 60 quasar spectra from the VLT have been used for the present work, yielding 153 absorption systems. Absorption systems were identified via a careful visual search of each spectrum, us...
involves karyotyping, whereas in the Netherlands, patients who undergo amniocentesis have a more limited assessment only for trisomies 13, 18, and 21 and the sex chromosomes; thus, the tradeoff is a bit different.In addition, cfDNA is provided as a screening test for trisomies 13, 18, and 21, not just for Down syndrome. However, the performance characteristics of cfDNA for trisomies 13 and 18 are not as favorable as for T21, with a higher rate of falsenegative and false-positive results. In addition, a percentage of patients-somewhere between 1.5% and 8%-fail to obtain a result, usually because of insufficient fetal DNA. Such "low fetal fraction" is associated with obesity, which is a significant problem affecting a high percentage of reproductive-aged women in the United States. It is estimated that 20% to 50% of cfDNA tests fail to provide adequate fetal DNA in obese women. In addition, low fetal fraction is also associated with aneuploidy; therefore, women with cfDNA test failure should be considered high risk and offered follow-up with diagnostic testing (as well as a second attempt at cfDNA). When these potential outcomes are all considered, the performance characteristics of cfDNA versus traditional screening are not as clearly superior.Like the authors of this abstracted paper, several other authors and experts (Prenat Diagn 2013;33 (7):636-642) have suggested a contingent approach, using multiple marker screening as an initial screening tool, and then offering NIPT to intermediate-risk patients and either cfDNA or invasive testing to the highest-risk patients. Before completely changing the current standard of care, we need to understand this tradeoff. These authors consider comparative costs, but do not really provide incremental cost-effectiveness ratios, which are the best way to compare these strategies. While cfDNA is a better test if we are looking at a very precise test for a single disorder, only in patients in whom the test is successful at providing a result current screening may be preferable if we are looking to screen the entire population for a broad range of birth defects. Cost utility analyses, conducted by independent investigators and considering all important outcomes, are clearly needed before our approach completely changes. -MEN)
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers