We measure star formation rates of ~50,000 optically-selected galaxies in the local universe (z~0.1), spanning a range from gas-rich dwarfs to massive ellipticals. We obtain dust-corrected SFRs by fitting the GALEX (UV) and SDSS (optical) photometry to a library of population synthesis models that include dust attenuation. For star-forming galaxies, our UV-based SFRs compare remarkably well with those derived from SDSS H alpha. Deviations from perfect agreement between these two methods are due to differences in the dust attenuation estimates. In contrast to H alpha, UV provides reliable SFRs for galaxies with weak or no H alpha emission, and where H alpha is contaminated with an emission from an AGN. We use full-SED SFRs to calibrate a simple prescription that uses GALEX UV magnitudes to produce good SFRs for normal star-forming galaxies. The specific SFR is considered as a function of stellar mass for (1) star-forming galaxies with no AGN, (2) those hosting an AGN, and for (3) galaxies without H alpha emission. We find that the three have distinct star formation histories, with AGN lying intermediate between the star-forming and the quiescent galaxies. Normal star forming galaxies (without an AGN) lie on a relatively narrow linear sequence. Remarkably, galaxies hosting a strong AGN appear to represent the massive continuation of this sequence. Weak AGN, while also massive, have lower SFR, sometimes extending to the realm of quiescent galaxies. We propose an evolutionary sequence for massive galaxies that smoothly connects normal star-forming galaxies to quiescent (red sequence) galaxies via strong and weak AGN. We confirm that some galaxies with no H alpha emission show signs of SF in the UV. We derive a UV-based cosmic SFR density at z=0.1 with smaller total error than previous measurements (abridged).Comment: Accepted for publication in ApJ (Special GALEX Supplement issue - Dec 2007). v2: Typo in Eq. 2 correcte
We report new precision measurements of the properties of our Galaxy's supermassive black hole. Based on astrometric (1995Y2007) and radial velocity (RV; 2000Y2007) measurements from the W. M. Keck 10 m telescopes, a fully unconstrained Keplerian orbit for the short-period star S0-2 provides values for the distance (R 0 ) of 8:0 AE 0:6 kpc, the enclosed mass (M bh ) of 4:1 AE 0:6 ; 10 6 M , and the black hole's RV, which is consistent with zero with 30 km s À1 uncertainty. If the black hole is assumed to be at rest with respect to the Galaxy (e.g., has no massive companion to induce motion), we can further constrain the fit, obtaining R 0 ¼ 8:4 AE 0:4 kpc and M bh ¼ 4:5 AE 0:4 ; 10 6 M . More complex models constrain the extended dark mass distribution to be less than 3Y4 ; 10 5 M within 0.01 pc, $100 times higher than predictions from stellar and stellar remnant models. For all models, we identify transient astrometric shifts from source confusion (up to 5 times the astrometric error) and the assumptions regarding the black hole's radial motion as previously unrecognized limitations on orbital accuracy and the usefulness of fainter stars. Future astrometric and RV observations will remedy these effects. Our estimates of R 0 and the Galaxy's local rotation speed, which it is derived from combining R 0 with the apparent proper motion of Sgr A Ã , ( 0 ¼ 229 AE 18 km s À1 ), are compatible with measurements made using other methods. The increased black hole mass found in this study, compared to that determined using projected mass estimators, implies a longer period for the innermost stable orbit, longer resonant relaxation timescales for stars in the vicinity of the black hole and a better agreement with the M bh -relation.
We present results of our Chandra observation with ACIS-I centered on the position of Sagittarius A * (Sgr A * ), the compact nonthermal radio source associated with the massive black hole (MBH) at the dynamical center of the Milky Way Galaxy. We have obtained the first high spatial resolution (≈ 1 ′′ ), hard X-ray (0.5-7 keV) image of the central 40 pc (17 ′ ) of the Galaxy.We have discovered an X-ray source, CXOGC J174540.0−290027, coincident with the radio position of Sgr A * to within 0. ′′ 35, corresponding to a maximum projected distance of 16 light-days for an assumed distance to the center of the Galaxy of 8.0 kpc. We received 222 ± 17 (1σ) net counts from the source in 40.3 ks. The source is detected with high significance, S/N ≃ 37σ, despite the highly elevated diffuse X-ray background in the central parsec of the Galaxy. Due to the low number of counts, the spectrum is well fit either by an absorbed power-law model with photon index Γ = 2.7 +1.3 −0.9 (N (E) ∝ E −Γ photons cm −2 s −1 keV −1 ) and column density N H = (9.8 +4.4 −3.0 ) × 10 22 cm −2 (90% confidence interval) or by an absorbed optically thin thermal plasma model with kT = 1.9 +0.9 −0.5 keV and N H = (11.5 +4.4 −3.1 ) × 10 22 cm −2 . Using the power-law model, the measured (absorbed) flux in the 2-10 keV band is (1.3 +0.4 −0.2 ) × 10 −13 ergs cm −2 s −1 , and the absorption-corrected luminosity is (2.4 +3.0 −0.6 ) × 10 33 ergs s −1 . The X-ray source coincident with Sgr A * is resolved, with an apparent diameter of ≈ 1 ′′ . We report the possible detection, at the 2.7σ significance level, of rapid continuum variability on a timescale of several hours. We also report the possible detection of an Fe Kα line at the ≃ 2σ level. The long-term variability of Sgr A * is constrained via comparison with the ROSAT /PSPC observation in 1992. The origin of the X-ray emission (MBH vs. stellar) and the implications of our observation for the various proposed MBH emission mechanisms are discussed. The current observations, while of limited signalto-noise, are consistent with the presence of both thermal and nonthermal emission components in the Sgr A * spectrum.We also briefly discuss the complex structure of the X-ray emission from the Sgr A radio complex and along the Galactic plane and present morphological evidence that Sgr A * and Sgr A West lie within the hot plasma in the central cavity of Sgr A East. Over 150 point sources are detected in the 17 ′ × 17 ′ field of view. Our survey of X-ray sources is complete down to a limiting 2-10 keV absorbed flux of F X ≈ 1.7 × 10 −14 ergs cm −2 s −1 . For sources at the distance of the Galactic Center, the corresponding absorption-corrected luminosity is L X ≈ 2.5 × 10 32 ergs s −1 . The complete flux-limited sample contains 85 sources. Finally, we present an analysis of the integrated emission from the detected point sources and the diffuse emission within the central 0.4 pc (10 ′′ ) of the Galaxy.
The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0:5Y 6. The survey includes multiwavelength imaging and spectroscopy from X-rayYtoYradio wavelengths covering a 2 deg 2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.
We analyze star formation (SF) as a function of stellar mass (M ⋆ ) and redshift z in the All Wavelength Extended Groth Strip International Survey (AEGIS). For 2905 field galaxies, complete to 10 10 (10 10.8 )M ⊙ at z < 0.7(1), with Keck spectroscopic redshifts out to z = 1.1, we compile SF rates (SFR) from emission lines, GALEX, and Spitzer MIPS 24µm photometry, optical-NIR M ⋆ measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct "main sequence (MS)", with a limited range of SFR at a given M ⋆ and z (1σ ±0.3 dex), and log(SFR) approximately proportional to log(M ⋆ ). The range of log(SFR) remains constant to z > 1, while the MS as a whole moves to higher SFR as z increases. The range of SFR along the MS constrains the amplitude of episodic variations of SF, and the effect of mergers on SFR. Typical galaxies spend ∼ 67(95)% of their lifetime since z = 1 within a factor of 2(4) of their average SFR at a given M ⋆ and z. The dominant mode of the evolution of SF since z ∼ 1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFR are enhanced in starbursts. LIRGs at z ∼ 1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs star formation prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.
We describe the calibration status and data products pertaining to the GR2 and GR3 data releases of the Galaxy Evolution Explorer (GALEX ). These releases have identical pipeline calibrations that are significantly improved over the GR1 data release. GALEX continues to survey the sky in the far-ultraviolet (FUV, $154 nm) and near-ultraviolet (NUV, $232 nm) bands, providing simultaneous imaging with a pair of photon-counting, microchannel plate, delay line readout detectors. These 1.25 field of view detectors are well suited to ultraviolet observations because of their excellent red rejection and negligible background. A dithered mode of observing and photon list output pose complex requirements on the data processing pipeline, entangling detector calibrations, and aspect reconstruction algorithms. Recent improvements have achieved photometric repeatability of 0.05 and 0.03 m AB in the FUV and NUV, respectively. We have detected a long-term drift of order 1% FUV and 6% NUVover the mission. Astrometric precision is of order 0.5 00 rms in both bands. In this paper we provide the GALEX user with a broad overview of the calibration issues likely to be confronted in the current release. Improvements are likely as the GALEX mission continues into an extended phase with a healthy instrument, no consumables, and increased opportunities for guest investigations.
The central half kiloparsec region of our Galaxy harbors a variety of phenomena unique to the central environment. This review discusses the observed structure and activity of the interstellar medium in this region in terms of its inevitable inflow toward the center of the Galactic gravitational potential well. A number of dissipative processes lead to a strong concentration of gas into a "Central Molecular Zone" of about 200-pc radius, in which the molecular medium is characterized by large densities, large velocity dispersions, high temperatures, and apparently strong magnetic fields. The physical state of the gas and the resultant star formation processes occurring in this environment are therefore quite unlike those occurring in the large-scale disk. Gas not consumed by star formation either enters a hot X ray-emitting halo and is lost as a thermally driven galactic wind or continues moving inward, probably discontinuously, through the domain of the few parsec-sized circumnuclear disks and eventually into the central parsec. There, the central radio source SgrA * currently accepts only a tiny fraction of the inflowing material, likely as a result of a limit cycle wherein the continual inflow of matter provokes star formation, which in turn can temporarily halt the inflow via mass-outflow winds.
International audienceWe present new diffraction-limited images of the Galactic center, obtained with the W. M. Keck I 10 m telescope. Within 0.4" of the Galaxy's central dark mass, 17 proper-motion stars, with K magnitudes ranging from 14.0 to 16.8, are identified, and 10 of these are new detections (six were also independently discovered by others). In this sample, three newly identified (S0-16, S0-19, and S0-20) and four previously known (S0-1, S0-2, S0-4, and S0-5) sources have measured proper motions that reveal orbital solutions. Orbits are derived simultaneously so that they jointly constrain the central dark object's properties: its mass, its position, and, for the first time using orbits, its motion on the plane of the sky. This analysis pinpoints the Galaxy's central dark mass to within 1.3 mas (10 AU) and limits its proper motion to 1.5+/-0.5 mas yr-1 (or equivalently 60+/-20 km s-1) with respect to the central stellar cluster. This localization of the central dark mass is consistent with our derivation of the position of the radio source Sgr A* in the infrared reference frame (+/-10 mas) but with an uncertainty that is a factor of 8 times smaller, which greatly facilitates searches for near-infrared counterparts to the central black hole. Consequently, one previous claim for such a counterpart can now be ascribed to a close stellar passage in 1996. Furthermore, we can place a conservative upper limit of 15.5 mag on any steady state counterpart emission. The estimated central dark mass from orbital motions is 3.7(+/-0.2)×106[R0/(8kpc)]3Msolar this is a more direct measure of mass than those obtained from velocity dispersion measurements, which are as much as a factor of 2 smaller. The Galactic center's distance, which adds an additional 19% uncertainty in the estimated mass, is now the limiting source of uncertainty in the absolute mass. For stars in this sample, the closest approach is achieved by S0-16, which came within a mere 45 AU (=0.0002pc=600Rs) at a velocity of 12,000 km s-1. This increases the inferred dark mass density by 4 orders of magnitude compared to earlier analyses based on velocity and acceleration vectors, making the Milky Way the strongest existing case for a supermassive black hole at the center of a normal-type galaxy. Well-determined orbital parameters for these seven Sgr A* cluster stars also provide new constraints on how these apparently massive, young (<10 Myr) stars formed in a region that seems to be hostile to star formation. Unlike the more distant He I emission line stars-another population of young stars in the Galactic center-that appear to have coplanar orbits, the Sgr A* cluster stars have orbital properties (eccentricities, angular momentum vectors, and apoapse directions) that are consistent with an isotropic distribution. Therefore, many of the mechanisms proposed for the formation of the He I stars, such as formation from a preexisting disk, are unlikely solutions for the Sgr A* cluster stars. Unfortunately, alternative theories for producing young stars, or old...
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers