Purpose: Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. However, whether clinically relevant subgroups based on DNA methylation patterns exist in lung cancer remains unclear.Experimental Design: Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was performed on 12 normal lung tissues and 124 tumors, including 83 adenocarcinomas, 23 squamous cell carcinomas (SqCC), 1 adenosquamous cancer, 5 large cell carcinomas, 9 large cell neuroendocrine carcinomas (LCNEC), and 3 small-cell carcinomas (SCLC). Unsupervised bootstrap clustering was performed to identify DNA methylation subgroups, which were validated in 695 adenocarcinomas and 122 SqCCs. Subgroups were characterized by clinicopathologic factors, whole-exome sequencing data, and gene expression profiles.Results: Unsupervised analysis identified five DNA methylation subgroups (epitypes). One epitype was distinctly associated with neuroendocrine tumors (LCNEC and SCLC). For adenocarcinoma, remaining four epitypes were associated with unsupervised and supervised gene expression phenotypes, and differences in molecular features, including global hypomethylation, promoter hypermethylation, genomic instability, expression of proliferation-associated genes, and mutations in KRAS, TP53, KEAP1, SMARCA4, and STK11. Furthermore, these epitypes were associated with clinicopathologic features such as smoking history and patient outcome.Conclusions: Our findings highlight one neuroendocrine and four adenocarcinoma epitypes associated with molecular and clinicopathologic characteristics, including patient outcome. This study demonstrates the possibility to further subgroup lung cancer, and more specifically adenocarcinomas, based on epigenetic/molecular classification that could lead to more accurate tumor classification, prognostication, and tailored patient therapy. Clin Cancer Res; 20(23); 6127-40. Ó2014 AACR.
Refined classification of LCLC has implications for diagnosis, prognostics, and therapy decisions. Our molecular analyses support the WHO 2015 classification of LCLC and LCNEC tumors, which herein follow different tumorigenic paths and can accordingly be stratified into different transcriptional subgroups, thus linking diagnostic immunohistochemical staining-driven classification with the transcriptional landscape of lung cancer.
Large cell carcinoma with or without neuroendocrine features (LCNEC and LC, respectively) constitutes 3–9% of non-small cell lung cancer but is poorly characterized at the molecular level. Herein we analyzed 41 LC and 32 LCNEC (including 15 previously reported cases) tumors using massive parallel sequencing for mutations in 26 cancer-related genes and gene fusions in ALK, RET, and ROS1. LC patients were additionally subdivided into three immunohistochemistry groups based on positive expression of TTF-1/Napsin A (adenocarcinoma-like, n = 24; 59%), CK5/P40 (squamous-like, n = 5; 12%), or no marker expression (marker-negative, n = 12; 29%). Most common alterations were TP53 (83%), KRAS (22%), MET (12%) mutations in LCs, and TP53 (88%), STK11 (16%), and PTEN (13%) mutations in LCNECs. In general, LCs showed more oncogene mutations compared to LCNECs. Immunomarker stratification of LC revealed oncogene mutations in 63% of adenocarcinoma-like cases, but only in 17% of marker-negative cases. Moreover, marker-negative LCs were associated with inferior overall survival compared with adenocarcinoma-like tumors (p = 0.007). No ALK, RET or ROS1 fusions were detected in LCs or LCNECs. Together, our molecular analyses support that LC and LCNEC tumors follow different tumorigenic paths and that LC may be stratified into molecular subgroups with potential implications for diagnosis, prognostics, and therapy decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.