Purpose: Lung cancers with epidermal growth factor receptor (EGFR)-activating mutations show good clinical response to gefitinib and erlotinib, selective tyrosine kinase inhibitors (TKI) to EGFR, but these tumors invariably develop drug resistance. Host stromal cells have been found to have a considerable effect on the behavior of cancer cells. Little is known, however, about the role of host cells on the sensitivity of cancer cells to receptor TKIs. We have therefore assessed the effect of crosstalk between stromal cells and lung cancer cells harboring EGFR mutations on susceptibility to EGFR-TKIs. Experimental Design: We evaluated the gefitinib sensitivity of lung cancer cells with EGFR-activating mutations, PC-9 and HCC827, when cocultured with fibroblasts and coinjected into severe combined immunodeficient mice. We also examined the effect of lung cancer cells to fibroblast recruitment. Results: Both human fibroblast cell lines and primary cultured fibroblasts produced various levels of hepatocyte growth factor (HGF). Lung cancer cells markedly recruited fibroblasts. The lung cancer cells became resistant to EGFR-TKIs when cocultured in vitro with HGF-producing fibroblasts and coinjected into severe combined immunodeficient mice. Importantly, combined use of gefitinib plus anti-HGF antibody or the HGF antagonist, NK4, successfully overcame the fibroblast-induced EGFR-TKI resistance both in vitro and in vivo. Colocalization of fibroblasts and HGF was detected in both xenograft tumors in mouse model and lung cancer patient specimens. Conclusions: These findings indicate that crosstalk to stromal fibroblasts plays a critical role in lung cancer resistance to EGFR-TKIs and may be an ideal therapeutic target in lung cancer with EGFR-activating mutations. ( Lung cancer is the leading cause of cancer-related death worldwide, with non-small cell lung cancer (NSCLC) accounting for ∼80% of lung cancers. The median survival of patients with metastatic NSCLC treated with the most active combination of conventional chemotherapy agents is 8 to 10 months (1, 2). Therefore, recent therapeutic strategies for NSCLC have focused on the development of molecular targeted agents.Epidermal growth factor receptor (EGFR), a member of a family of closely related growth factor receptor tyrosine kinases, is expressed in a majority of NSCLCs and has been an attractive target for the development of therapeutic agents. Almost 90% of these somatic activating mutations in EGFR consist of inframe deletions in exon 19 and L858R point mutations in exon 21 (3, 4). These mutations induce oncogenic activity and are closely correlated with sensitivity to small-molecule EGFR tyrosine kinase inhibitors (TKI), such as gefitinib and erlotinib. These mutations are more frequently present in females than in males, in nonsmokers than in smokers, in East Asians than in other ethnic groups, and in adenocarcinomas than in other tumor types (5). Several prospective clinical trials have shown that 70% to 75% of patients with tumors harboring these mu...
Expression of vascular endothelial growth factor (VEGF)-C and that of its receptors were assessed in non-small cell lung cancer. Immunohistochemistry revealed positive VEGF-C expression in 38.7% (24/62) of the patients studied. A significant positive correlation was found between VEGF-C in cancer cells and VEGF receptor-3 (VEGFR-3) in vascular endothelial cells, but not between VEGF-C in cancer cells and VEGFR-2 in endothelial cells. In this cohort of lung cancer patients, VEGF-C expression was significantly associated with lymph node metastasis, lymphatic vessel invasion, and worse outcomes after the operation. Although the independent prognostic impact of VEGF-C and VEGFR-3 was not clear, VEGFR-2 expression in endothelial cells retained the independency as the prognostic indicator. In light of these findings, we conclude that VEGF-C plays an important role in lymphatic invasion/metastasis and tumour progression in non-small cell lung cancer. © 2001 Cancer Research Campaign http://www.bjcancer.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.