The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.
Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfill diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations, and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk, and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
Novel species of fungi described in this study include those from various countries as follows: Angola , Gnomoniopsis angolensis and Pseudopithomyces angolensis on unknown host plants. Australia , Dothiora corymbiae on Corymbia citriodora, Neoeucasphaeria eucalypti (incl. Neoeucasphaeria gen. nov.) on Eucalyptus sp., Fumagopsis stellae on Eucalyptus sp., Fusculina eucalyptorum (incl. Fusculinaceae fam. nov.) on Eucalyptus socialis, Harknessia corymbiicola on Corymbia maculata, Neocelosporium eucalypti (incl. Neocelosporium gen. nov., Neocelosporiaceae fam. nov. and Neocelosporiales ord. nov.) on Eucalyptus cyanophylla, Neophaeomoniella corymbiae on Corymbia citriodora , Neophaeomoniella eucalyptigena on Eucalyptus pilularis, Pseudoplagiostoma corymbiicola on Corymbia citriodora, Teratosphaeria gracilis on Eucalyptus gracilis, Zasmidium corymbiae on Corymbia citriodora. Brazil , Calonectria hemileiae on pustules of Hemileia vastatrix formed on leaves of Coffea arabica , Calvatia caatinguensis on soil, Cercospora solani-betacei on Solanum betaceum , Clathrus natalensis on soil, Diaporthe poincianellae on Poincianella pyramidalis , Geastrum piquiriunense on soil, Geosmithia carolliae on wing of Carollia perspicillata , Henningsia resupinata on wood, Penicillium guaibinense from soil, Periconia caespitosa from leaf litter, Pseudocercospora styracina on Styrax sp., Simplicillium filiforme as endophyte from Citrullus lanatus , Thozetella pindobacuensis on leaf litter, Xenosonderhenia coussapoae on Coussapoa floccosa. Canary Islands (Spain) , Orbilia amarilla on Euphorbia canariensis. Cape Verde Islands , Xylodon jacobaeus on Eucalyptus camaldulensis. Chile , Colletotrichum arboricola on Fuchsia magellanica. Costa Rica , Lasiosph...
Aim Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM communities in an isolated, formerly glaciated, high arctic archipelago, and provide explanations for their phylogeographic origins.Location Svalbard.Methods We generated and analysed internal transcribed spacer (ITS) nuclear ribosomal DNA sequences from both curated sporocarp collections (from Svalbard) and soil polymerase chain reaction (PCR) clone libraries (from Svalbard and the North American Arctic), compared these with publicly available sequences in GenBank, and estimated the phylogenetic diversity of ECM fungi in Svalbard. In addition, we conducted coalescent analyses to estimate migration rates in selected species.Results Despite Svalbard's geographic isolation and arctic climate, its ECM fungi are surprisingly diverse, with at least 72 non-singleton operational taxonomic units (soil) and 109 phylogroups (soil + sporocarp). The most species-rich genera are Thelephora/Tomentella, Cortinarius and Inocybe, followed by Hebeloma, Russula, Lactarius, Entoloma, Sebacina, Clavulina, Laccaria, Leccinum and Alnicola. Despite the scarcity of available reference data from other arctic regions, the majority of the phylogroups (73.4%) were also found outside Svalbard. At the same time, all putative Svalbard 'endemics' were newly sequenced taxa from diverse genera with massive undocumented diversity. Overall, our results support long-distance dispersal more strongly than vicariance and glacial survival. However, because of the high variation in nucleotide substitution rates among fungi, allopatric persistence since the Pliocene, although unlikely, cannot be statistically rejected. Results from the coalescent analyses suggest recent gene flow among different arctic areas. Main conclusionsOur results indicate numerous recent colonization events and suggest that long-distance, transoceanic dispersal is widespread in arctic ECM fungi, which differs markedly from the currently prevailing view on the dispersal capabilities of ECM fungi. Our molecular evidence indicates that long-distance dispersal has probably played a major role in the phylogeographic history of some ECM fungi in the Northern Hemisphere. Our results may have implications for studies on the biodiversity, ecology and conservation of arctic fungi in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.