During 2015 the ATLAS experiment recorded of proton–proton collision data at a centre-of-mass energy of . The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb −1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at √ s = 13 TeV. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons. Contents
The luminosity determination for the ATLAS detector at the LHC during pp collisions at 8 TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of is obtained for the of pp collision data delivered to ATLAS at 8 TeV in 2012.
Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J /ψ particles. Data collected in 2010 at √ s = 7 TeV are used, corresponding to an integrated luminosity of almost 40 pb −1 . The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.
Study of the rare decays of B 0 s and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector The ATLAS Collaboration A study of the decays B 0 s → µ + µ − and B 0 → µ + µ − has been performed using 26.3 fb −1 of 13 TeV LHC proton-proton collision data collected with the ATLAS detector in 2015 and 2016. Since the detector resolution in µ + µ − invariant mass is comparable to the B 0 s -B 0 mass difference, a single fit determines the signal yields for both decay modes. This results in a measurement of the branching fraction B(B 0 s → µ + µ − ) = 3.2 +1.1 −1.0 × 10 −9 and an upper limit B(B 0 → µ + µ − ) < 4.3 × 10 −10 at 95% confidence level. The result is combined with the Run 1 ATLAS result, yielding B(B 0 s → µ + µ − ) = 2.8 +0.8 −0.7 ×10 −9 and B(B 0 → µ + µ − ) < 2.1×10 −10 at 95% confidence level. The combined result is consistent with the Standard Model prediction within 2.4 standard deviations in the B(B 0 → µ + µ − )-B(B 0 s → µ + µ − ) plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.