HeteroPolyAcids (HPA's) are a class of solid acids that have broad applications in many fields of science and technology, including catalysis and chemical engineering. The proton locations within the thermally stable and commonly known Keggin unit, which is the primary structure building unit/block, has remained undetermined in anhydrous HPAs, despite numerous theoretical and experimental efforts. However, Rotational Echo DOuble Resonance (REDOR) NMR and Density Functional Theory (DFT) quantum chemical calculations offer a new opportunity to determine the exact locations of protons within the Keggin unit. The crucial experimental evidence is provided for the basic and very extensively studied acidic form of H(8-n)X(n+)M(12)O(40), X = Si, P and M = Mo, W, belonging to the Keggin structure. While showing that the acidic protons are located in the bridging oxygen positions (R(P-H) = 520 +/- 20 pm) in H(3)PMo(12)O(40) and in the terminal oxygen positions (R(P-H) = 570 +/- 20 pm) in H(3)PW(12)O(40), REDOR measurements also provide for the first time the structural basis to consistently rank the acid strength for the important class of Keggin solid catalysts.
Avenue Albert Einstein, 69626 Vi/leurbanne, France A copper-cerium oxide sample prepared with an atomic ratio, Cu : Ce, of 0.01 has been studied by electron paramagnetic resonance (EPR) spectroscopy. A well resolved spectrum of copper(11) ion pairs has been evi denced and the hyperfine structure of the perpendicular components clearly appears. The high resolution can be explained by the presence of two nearly equivalent Cu2+ ions separated by an oxygen ion. A correlation in EPR parameters has been found between the signal corresponding to a single Cu2+ ion, a precursor of the dimer, and the copper(11) ion pair spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.