SummaryBis‐(3′,5′) cyclic di‐guanylate (c‐di‐GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c‐di‐GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD‐GYP domains. Here, we have determined the structure of an enzymatically active HD‐GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c‐di‐GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c‐di‐GMP. This structure completes the picture of all domains involved in c‐di‐GMP metabolism and reveals that the HD‐GYP family splits into two distinct subgroups containing bi‐ and trinuclear metal centres.
As part of a high-throughput structural analysis of SARS-coronavirus (SARS-CoV) proteins, we have solved the structure of the non-structural protein 9 (nsp9). This protein, encoded by ORF1a, has no designated function but is most likely involved with viral RNA synthesis. The protein comprises a single beta-barrel with a fold previously unseen in single domain proteins. The fold superficially resembles an OB-fold with a C-terminal extension and is related to both of the two subdomains of the SARS-CoV 3C-like protease (which belongs to the serine protease superfamily). nsp9 has, presumably, evolved from a protease. The crystal structure suggests that the protein is dimeric. This is confirmed by analytical ultracentrifugation and dynamic light scattering. We show that nsp9 binds RNA and interacts with nsp8, activities that may be essential for its function(s).
The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.