This study was conducted with an aim to determine the interactions of pure phenolic compounds (gallic acid, ferulic acid, chlorogenic acid, quercetin, apigenin, and catechin) and phenolics from plant extracts (green tea and green coffee) with protein fractions of white bean (albumins and globulins). The physicochemical properties of complexes were established through an analysis of the UV-Vis spectrum; relative content of free amino groups, thiol groups, and tryptophan residues; chromatographic (SE-HPLC) and electrophoretic (SD-PAGE, Native-PAGE) properties; and conformational changes reflected by Fourier transform infrared spectra. Further, the effect of pH and ionic strength on the solubility and stability of complexes as well as the binding capacity of phenolics to proteins were determined. Results show that, in most cases, phenolics significantly affected the measured parameters; however, the effects were strongly differentiated by the type of phenolic compounds and protein fraction that were applied. Moreover, it may be that changes in the properties of complexes are reflected in the biological nature of proteins and phenolic compounds such as their bioavailability and physiological activity. However, due to the structural complexity of proteins, and the multitudinous factors that affect their interactions, such studies are a great and long-term challenge for the domain of food science.
This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestion in vitro, and 7 μM for extract after absorption in vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.