The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.
The Genome Sequence Archive (GSA) is a data repository for archiving raw sequence data, which provides data storage and sharing services for worldwide scientific communities. Considering explosive data growth with diverse data types, here we present the GSA family by expanding into a set of resources for raw data archive with different purposes, namely, GSA (https://ngdc.cncb.ac.cn/gsa/), GSA for Human (GSA-Human, https://ngdc.cncb.ac.cn/gsa-human/), and Open Archive for Miscellaneous Data (OMIX, https://ngdc.cncb.ac.cn/omix/). Compared with the 2017 version, GSA has been significantly updated in data model, online functionalities, and web interfaces. GSA-Human, as a new partner of GSA, is a data repository specialized in human genetics-related data with controlled access and security. OMIX, as a critical complement to the two resources mentioned above, is an open archive for miscellaneous data. Together, all these resources form a family of resources dedicated to archiving explosive data with diverse types, accepting data submissions from all over the world, and providing free open access to all publicly available data in support of worldwide research activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.