Abstract. The Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) programme is an international collaborative project focusing on understanding the sources, processes and health effects of air pollution in the Beijing megacity. APHH-Beijing brings together leading China and UK research groups, state-of-the-art infrastructure and air quality models to work on four research themes: (1) sources and emissions of air pollutants; (2) atmospheric processes affecting urban air pollution; (3) air pollution exposure and health impacts; and (4) interventions and solutions. Themes 1 and 2 are closely integrated and support Theme 3, while Themes 1–3 provide scientific data for Theme 4 to develop cost-effective air pollution mitigation solutions. This paper provides an introduction to (i) the rationale of the APHH-Beijing programme and (ii) the measurement and modelling activities performed as part of it. In addition, this paper introduces the meteorology and air quality conditions during two joint intensive field campaigns – a core integration activity in APHH-Beijing. The coordinated campaigns provided observations of the atmospheric chemistry and physics at two sites: (i) the Institute of Atmospheric Physics in central Beijing and (ii) Pinggu in rural Beijing during 10 November–10 December 2016 (winter) and 21 May–22 June 2017 (summer). The campaigns were complemented by numerical modelling and automatic air quality and low-cost sensor observations in the Beijing megacity. In summary, the paper provides background information on the APHH-Beijing programme and sets the scene for more focused papers addressing specific aspects, processes and effects of air pollution in Beijing.
Abstract. The usefulness of mercury (Hg) isotopes for tracing the sources and pathways of Hg (and its vectors) in atmospheric fine particles (PM2.5) is uncertain. Here, we measured Hg isotopic compositions in 30 potential source materials and 23 PM2.5 samples collected in four seasons from the megacity Beijing (China) and combined the seasonal variation in both mass-dependent fractionation (represented by the ratio 202Hg ∕ 198Hg, δ202Hg) and mass-independent fractionation of isotopes with odd and even mass numbers (represented by Δ199Hg and Δ200Hg, respectively) with geochemical parameters and meteorological data to identify the sources of PM2.5-Hg and possible atmospheric particulate Hg transformation. All PM2.5 samples were highly enriched in Hg and other heavy metals and displayed wide ranges of both δ202Hg (−2.18 to 0.51 ‰) and Δ199Hg (−0.53 to 0.57 ‰), as well as small positive Δ200Hg (0.02 to 0.17 ‰). The results indicated that the seasonal variation in Hg isotopic composition (and elemental concentrations) was likely derived from variable contributions from anthropogenic sources, with continuous input due to industrial activities (e.g., smelting, cement production and coal combustion) in all seasons, whereas coal combustion dominated in winter and biomass burning mainly found in autumn. The more positive Δ199Hg of PM2.5-Hg in spring and early summer was likely derived from long-range-transported Hg that had undergone extensive photochemical reduction. The study demonstrated that Hg isotopes may be potentially used for tracing the sources of particulate Hg and its vectors in the atmosphere.
Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.