Climate change will alter precipitation patterns with consequences for soil C cycling. An understanding of how fluctuating soil moisture affects microbial processes is therefore critical to predict responses to future global change. We investigated how long‐term experimental field drought influences microbial tolerance to lower moisture levels (“resistance”) and ability to recover when rewetted after drought (“resilience”), using soils from a heathland which had been subjected to experimental precipitation reduction during the summer for 18 years. We tested whether drought could induce increased resistance, resilience, and changes in the balance between respiration and bacterial growth during perturbation events, by following a two‐tiered approach. We first evaluated the effects of the long‐term summer drought on microbial community functioning to drought and drying–rewetting (D/RW), and second tested the ability to alter resistance and resilience through additional perturbation cycles. A history of summer drought in the field selected for increased resilience but not resistance, suggesting that rewetting after drought, rather than low moisture levels during drought, was the selective pressure shaping the microbial community functions. Laboratory D/RW cycles also selected for communities with a higher resilience rather than increased resistance. The ratio of respiration to bacterial growth during D/RW perturbation was lower for the field drought‐exposed communities and decreased for both field treatments during the D/RW cycles. This suggests that cycles of D/RW also structure microbial communities to respond quickly and efficiently to rewetting after drought. Our findings imply that microbial communities can adapt to changing climatic conditions and that this might slow the rate of soil C loss predicted to be induced by future cyclic drought.
Nutrients constrain the soil carbon cycle in tropical forests, but we lack knowledge on how these constraints vary within the soil microbial community. Here, we used in situ fertilization in a montane tropical forest and in two lowland tropical forests on contrasting soil types to test the principal hypothesis that there are different nutrient constraints to different groups of microorganisms during the decomposition of cellulose. We also tested the hypotheses that decomposers shift from nitrogen to phosphorus constraints from montane to lowland forests, respectively, and are further constrained by potassium and sodium deficiency in the western Amazon. Cellulose and nutrients (nitrogen, phosphorus, potassium, sodium, and combined) were added to soils in situ, and microbial growth on cellulose (phospholipid fatty acids and ergosterol) and respiration were measured. Microbial growth on cellulose after single nutrient additions was highest following nitrogen addition for fungi, suggesting nitrogen as the primary limiting nutrient for cellulose decomposition. This was observed at all sites, with no clear shift in nutrient constraints to decomposition between lowland and montane sites. We also observed positive respiration and fungal growth responses to sodium and potassium addition at one of the lowland sites. However, when phosphorus was added, and especially when added in combination with other nutrients, bacterial growth was highest, suggesting that bacteria out-compete fungi for nitrogen where phosphorus is abundant. In summary, nitrogen constrains fungal growth and cellulose decomposition in both lowland and montane tropical forest soils, but additional nutrients may also be of critical importance in determining the balance between fungal and bacterial decomposition of cellulose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.