A B S T R A CT The plasma pyridoxal-5'-phosphate (PLP) level of alcoholic subjects has been compared with that of non-alcoholic individuals in order to ascertain the incidence of abnormal vitamin Be metabolism in chronic alcohol abuse. 66 alcoholic subjects were selected on the basis that they did not exhibit abnormal liver function tests and hematologic findings. 35 of them had plasma PLP concentrations less than 5 ng/ml, the lowest value encountered in 94 control subjects, indicating a high incidence of deranged PLP metabolism in alcoholic patients even when hepatic and hematologic abnormalities are absent. The biochemical basis for the altered PLP metabolism in chronic alcohol abuse was examined. Low plasma PLP levels in alcoholics were not accompanied by decreased pyridoxal kinase and pyridoxine phosphate oxidase activities in erythrocytes. Further studies with erythrocytes demonstrated that the cellular content of PLP is determined not only by the activities of these PLP-synthesizing enzymes but also by the activity of a phosphate-sensitive, membraneassociated, neutral phosphatase, which hydrolyzes phosphorylated B. compounds.Acetaldehyde, but not ethanol, impaired the net formation of PLP from pyridoxal, pyridoxine, and pyridoxine plhosphate by erythrocytes. However, when the B.-phosphate phosphatase activity was inhibited by 80 mM phosphate, this effect of acetaldehyde was abolished.
A B S T R A C T Previous studies in vivo and with isolated perfused rat livers have suggested that the deleterious effect of ethanol on hepatic pyridoxal 5'-phosphate metabolism is mediated by acetaldehyde. Inasmuch as acetaldehyde has no effect on the synthesis of pyridoxal phosphate, it has also been postulated that acetaldehyde accelerates pyridoxal phosphate degradation by displacing this coenzyme from binding proteins, which protect it against hydrolysis. To test these hypotheses, studies have been performed with isolated rat hepatocytes, subcellular fractions of rat liver, and human erythrocytes. Ethanol oxidation lowered the pyridoxal phosphate content of isolated liver cells when acetaldehyde oxidation was inhibited by either disulfiram or prior treatment of rats with cyanamide. Additions of 7.5 mM acetaldehyde alone at 40-min intervals to cell suspensions decreased hepatic pyridoxal phosphate content only slightly because acetaldehyde was rapidly metabolized. However, when acetaldehyde oxidation and reduction were inhibited by cyanamide treatment and by 4-methylpyrazole and isobutyramide, respectively, a 40% decrease in hepatic pyridoxal phosphate content was observed in 80 min of incubation.In equilibrium dialysis experiments, acetaldehyde, 7.5 and 15 mM, displaced protein-bound pyridoxal phosphate in undialyzed hepatic cytosol and in hemolysate supernate containing added pyridoxal phosphate. In the presence of alkaline phosphatase, acetaldehyde accelerated the degradation of pyridoxal phosphate in dialyzed hemolysate supernate and hepatic cytosol with added pyridoxal phosphate. Acetaldehyde also inhibits tyrosine aminotransferase. The kinetics of inhibition were mixed competitive-noncompeti-
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers