Neutrophils utilize immunoglobulins (Igs) to clear antigen, but their role in Ig production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T-independent Ig responses to circulating antigen. Neutrophils colonized peri-MZ areas after post-natal mucosal colonization by microbes and enhanced their B-helper function upon receiving reprogramming signals from splenic sinusoidal endothelial cells, including interleukin 10 (IL-10). Splenic neutrophils induced Ig class switching, somatic hypermutation and antibody production by activating MZ B cells through a mechanism involving the cytokines BAFF, APRIL and IL-21. Neutropenic patients had fewer and hypomutated MZ B cells and less preimmune Igs to T-independent antigens, which indicates that neutrophils generate an innate layer of antimicrobial Ig defense by interacting with MZ B cells.
A dense mucous layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucous barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucous layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcγRIIB receptor complex that activated β-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor-κB. MUC2 induced additional DC-conditioning signals via intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constraints the immunogenicity of gut antigens by delivering tolerogenic signals.
Assessment of tumor infiltrating lymphocytes (TILs) in histopathological specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible and reliable immuno-oncology biomarkers is clear. In Part 1 of this review we briefly discuss the host immune response to tumors and different approaches to TIL assessment. We propose a standardized methodology to assess TILs in solid tumors on H&E sections, in both primary and metastatic settings, based on the International Immuno-Oncology Biomarker Working Group guidelines for TIL assessment in invasive breast carcinoma. A review of the literature regarding the value of TIL assessment in different solid tumor types follows in Part 2. The method we propose is reproducible, affordable, easily applied, and has demonstrated prognostic and predictive significance in invasive breast carcinoma. This standardized methodology may be used as a reference against which other methods are compared, and should be evaluated for clinical validity and utility. Standardization of TIL assessment will help to improve consistency and reproducibility in this field, enrich both the quality and quantity of comparable evidence, and help to thoroughly evaluate the utility of TILs assessment in this era of immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.