CRONOS is a suite of numerical codes for the predictive/interpretative simulation of a full tokamak discharge. It integrates, in a modular structure, a 1D transport solver with general 2D magnetic equilibria, several heat, particle and impurities transport models, as well as heat, particle and momentum sources. This paper gives a first comprehensive description of the CRONOS suite: overall structure of the code, main available models, details on the simulation workflow and numerical implementation. Some examples of applications to the analysis of experimental discharges and the predictions of ITER scenarios are also given.
Équipe 107 : Physique des plasmas chaudsInternational audienceDuring the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential
The overarching goals of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) are to enable European citizens to lead healthy, active and independent lives whilst ageing. The EIP on AHA includes 74 Reference Sites. The aim of this study was to transfer innovation from an app developed by the MACVIA-France EIP on AHA reference site (Allergy Diary) to other reference sites. The phenotypic characteristics of rhinitis and asthma multimorbidity in adults and the elderly will be compared using validated information and communication technology (ICT) tools (i.e. the Allergy Diary and CARAT: Control of Allergic Rhinitis and Asthma Test) in 22 Reference Sites or regions across Europe. This will improve the understanding, assessment of burden, diagnosis and management of rhinitis in the elderly by comparison with an adult population. Specific objectives will be: (i) to assess the percentage of adults and elderly who are able to use the Allergy Diary, (ii) to study the phenotypic characteristics and treatment over a 1-year period of rhinitis and asthma multimorbidity at baseline (cross-sectional study) and (iii) to follow-up using visual analogue scale (VAS). This part of the study may provide some insight into the differences between the elderly and adults in terms of response to treatment and practice. Finally (iv) work productivity will be examined in adults.
In JET, lower hybrid (LH) and ion cyclotron resonance frequency (ICRF) wave absorption in the scrape-off layer can lead to enhanced heat fluxes on some plasma facing components (PFCs). Experiments have been carried out to characterize these heat loads in order to: (i) prepare JET operation with the Be wall which has a reduced power handling capability as compared with the carbon wall and (ii) better understand the physics driving these wave absorption phenomena and propose solutions for next generation systems to reduce them. When using ICRF, hot spots are observed on the antenna structures and on limiters close to the powered antennas and are explained by acceleration of ions in RF-rectified sheath potentials. High temperatures up to 800 °C can be reached on locations where a deposit has built up on tile surfaces. Modelling which takes into account the fast thermal response of surface layers can reproduce well the surface temperature measurements via infrared (IR) imaging, and allow evaluation of the heat fluxes local to active ICRF antennas. The flux scales linearly with the density at the antenna radius and with the antenna voltage. Strap phasing corresponding to wave spectra with lower k
∥ values can lead to a significant increase in hot spot intensity in agreement with antenna modelling that predicts, in that case, an increase in RF sheath rectification. LH absorption in front of the antenna through electron Landau damping of the wave with high N
∥ components generates hot spots precisely located on PFCs magnetically connected to the launcher. Analysis of the LH hot spot surface temperature from IR measurements allows a quantification of the power flux along the field lines: in the worst case scenario it is in the range 15–30 MW m−2. The main driving parameter is the LH power density along the horizontal rows of the launcher, the heat fluxes scaling roughly with the square of the LH power density. The local electron density in front of the grill increases with the LH launched power; this also enhances the intensity of the LH hot spots.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.