We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo’s third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg2, a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10−25 yr−1. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day−1 (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than −16.6 mag assuming flat evolution (fading by 1 mag day−1) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than −16.6 mag. Comparing to model grids, we find that some kilonovae must have M ej < 0.03 M ⊙, X lan > 10−4, or ϕ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%.
We present visible and near-infrared (NIR) photometric and spectroscopic observations of interstellar object (ISO) 2I/Borisov taken from 2019 September 10 to 2019 December 20 using the GROWTH, the Apache Point Observatory Astrophysical Research Consortium 3.5 m, and the NASA Infrared Telescope Facility 3.0 m combined with pre-and postdiscovery observations of 2I obtained by the Zwicky Transient Facility from 2019 March 17 to 2019 May 5. Comparison with imaging of distant solar system comets shows an object very similar to mildly active solar system comets with an outgassing rate of ∼10 27 mol s −1. The photometry, taken in filters spanning the visible and NIR range, shows a gradual brightening trend of ∼0.03 mag day −1 since 2019 September 10 UTC for a reddish object becoming neutral in the NIR. The light curve from recent and prediscovery data reveals a brightness trend suggesting the recent onset of significant H 2 O sublimation with the comet being active with super volatiles such as CO at heliocentric distances >6 au consistent with its extended morphology. Using the
We present visible and mid-infrared imagery and photometry of temporary Jovian co-orbital comet P/2019 LD2 taken with Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3), Spitzer Space Telescope/Infrared Array Camera (Spitzer/IRAC), and the GROWTH telescope network, visible spectroscopy from Keck/Low-Resolution Imaging Spectrometer (LRIS), and archival Zwicky Transient Facility observations taken between 2019 April and 2020 August. Our observations indicate that the nucleus of LD2 has a radius between 0.2 and 1.8 km assuming a 0.08 albedo and a coma dominated by ∼100 μm-scale dust ejected at ∼1 m s−1 speeds with a ∼1′ jet pointing in the southwest direction. LD2 experienced a total dust mass loss of ∼108 kg at a loss rate of ∼6 kg s−1 with Afρ/cross section varying between ∼85 cm/125 km2 and ∼200 cm/310 km2 from 2019 April 9 to 2019 November 8. If the increase in Afρ/cross section remained constant, it implies LD2's activity began ∼2018 November when within 4.8 au of the Sun, implying the onset of H2O sublimation. We measure CO/CO2 gas production of ≲1027 mol s−1/≲1026 mol s−1 from our 4.5 μm Spitzer observations; g–r = 0.59 ± 0.03, r–i = 0.18 ± 0.05, and i–z = 0.01 ± 0.07 from GROWTH observations; and H2O gas production of ≲80 kg s−1 scaling from our estimated C 2 production of mol s−1 from Keck/LRIS spectroscopy. We determine that the long-term orbit of LD2 is similar to Jupiter-family comets having close encounters with Jupiter within ∼0.5 Hill radius in the last ∼3 y and within 0.8 Hill radius in ∼9 y. Additionally, 78.8% of our orbital clones are ejected from the solar system within 1 × 106 yr, having a dynamical half-life of 3.4 × 105 yr.
We present the design and performance of the GROWTH-India telescope, a 0.7 m robotic telescope dedicated to time-domain astronomy. The telescope is equipped with a 4k back-illuminated camera that gives a 0.°82 field of view and a sensitivity of m g′ ∼ 20.5 in 5 minute exposures. Custom software handles observatory operations: attaining high on-sky observing efficiencies (≳80%) and allowing rapid response to targets of opportunity. The data processing pipelines are capable of performing point-spread function photometry as well as image subtraction for transient searches. We also present an overview of the GROWTH-India telescope’s contributions to the studies of gamma-ray bursts, the electromagnetic counterparts to gravitational wave sources, supernovae, novae, and solar system objects.
We present time-resolved visible spectrophotometry of 2020 CD 3 , the second known minimoon. The spectrophotometry was taken with the Keck I/Low Resolution Imaging Spectrometer between wavelengths 434 and 912 nm in the B, g, V, R, I, and RG850 filters as it was leaving the Earth-Moon system on 2020 March 23 UTC. The spectrum of 2020 CD 3 resembles V-type asteroids and some lunar rock samples with a 434-761 nm reddish slope of ∼18%/100 nm (g-r=0.62±0.08 and r-i=0.21±0.06) with an absorption band at ∼900 nm corresponding to i-z=−0.54±0.10. Combining our measured H of 31.9±0.1 with an albedo of 0.35 typical for V-type asteroids, we determine 2020 CD 3 ʼs diameter to be ∼0.9±0.1 m, making it the first minimoon and one of the smallest asteroids to be spectrally studied. We use our time-series photometry to detect significant periodic light-curve variations with a period of ∼573 s and amplitude of ∼1. In addition, we extend the observational arc of 2020 CD 3 to 37 days, to 2020 March 23 UTC. From the improved orbital solution for 2020 CD 3 , we estimate the likely duration of its capture to be ∼2 yr and the nongravitational perturbation on its orbit due to radiation pressure with an area-to-mass ratio of (6.9±2.4)×10 −4 m 2 kg −1 implying a density of 2.3±0.8 g cm −3 , broadly compatible with other meter-scale asteroids and lunar rock. We searched for prediscovery detections of 2020 CD 3 in the Zwicky Transient Facility archive as far back as 2018 October but were unable to locate any positive detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.