A new model for the free transverse vibration of axially functionally graded (FG) tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM) by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.
The framed structure infilled with a mortarless brick (MB) panel exhibits considerable in-plane energy dissipation because of the relative sliding between bricks and good out-of-plane stability resulting from the use of interlocking mechanisms. The cyclic behaviors of MB are investigated experimentally in this study. Two different types of bricks, namely non-interlocking mortarless brick (N-IMB) and interlocking mortarless brick (IMB), are examined experimentally. The cyclic behavior of all of the joints (N-IMB and IMB) are investigated in consideration of the effects of interlocking shapes, loading compression stress levels and loading cycles. The hysteretic loops of N-IMB and IMB joints are obtained, according to which a mechanical model is developed. The Mohr–Coulomb failure criterion is employed to describe the shear failure modes of all of the investigated joints. A typical frictional behavior is observed for the N-IMB joints, and a significant stiffening effect is observed for the IMB joints during their sliding stage. The friction coefficients of all of the researched joints increase with the augmentation of the compression stress level and improvement of the smoothness of the interlocking surfaces. An increase in the loading cycle results in a decrease in the friction coefficients of all of the joints. The degradation rate (DR) of the friction coefficients increases with the reduction in the smoothness of the interlocking surface.
The behavior of dry stack masonry (DSM) is influenced by the interaction of the infill with the frame (especially the joints between bricks), which requires further research. This study investigates the compression and shear behaviors of DSM. First, a series of compression tests were carried out on both masonry prism with mortar (MP_m) and DSM prism (MP_ds). The failure mode of each prism was determined. Different from the MP_m, the stress-strain relationship of the MP_ds was characterized by an upward concavity at the initial stage. The compression strength of the MP_ds was slightly reduced by 15%, while the elastic modulus was reduced by over 62%. In addition, 36 shear-compression tests were carried out under cyclic loads to emphasize the influence of various loads on the shear-compression behavior of DSM. The results showed that the Mohr-Coulomb friction law adequately represents the failure of dry joints at moderate stress levels, and the varying friction coefficients under different load amplitudes cannot be neglected. The experimental setup and results are valuable for further research.
A minimum-variance unbiased estimation method is developed to identify the time-varying wind load from measured responses. The formula derivation of recursive identification equations is obtained in state space. The new approach can simultaneously estimate the entire wind load and the unknown structural responses only with limited measurement of structural acceleration response. The fluctuating wind speed process is investigated by the autoregressive (AR) model method in time series analysis. The accuracy and feasibility of the inverse approach are numerically investigated by identifying the wind load on a twenty-story shear building structure. The influences of the number and location of accelerometers are examined and discussed. In order to study the stability of the proposed method, the effects of the errors in crucial factors such as natural frequency and damping ratio are discussed through detailed parametric analysis. It can be found from the identification results that the proposed method can identify the wind load from limited measurement of acceleration responses with good accuracy and stability, indicating that it is an effective approach for estimating wind load on building structures.
The extended minimum variance unbiased estimation approach can be used for joint state/parameter/input estimation based on the measured structural responses. However, it is necessary to measure the structural displacement and acceleration responses at each story for the simultaneous identification of structural parameters and unknown wind load. A novel method of identifying structural state, parameters, and unknown wind load from incomplete measurements is proposed. The estimation is performed in a modal extended minimum variance unbiased manner, based on incomplete measurements of wind-induced structural displacement and acceleration responses. The feasibility and accuracy of the proposed method are numerically validated by identifying the wind load and structural parameters on a ten-story shear building structure with incomplete measurements. The effects of crucial factors, including sampling duration and the number of measurements, are discussed. Furthermore, the practical application of the developed inverse method is evaluated based on wind tunnel testing results of a 234 m tall building structure. The results indicate that the structural state, parameters, and unknown wind load can be identified accurately using the proposed approach.
A new masonry system has been developed to improve the seismic behaviour of RC frame with masonry panels. In this system dry-stack masonry panels are built with masonry units capable of sliding in-plane of a panel. These masonry panels have reduced in-plane stiffness but increased frictional energy dissipation capacity compared with the traditional masonry panels. Under seismic or wind loads these panels do not detrimentally interfere with natural RC frame response but rather positively contribute to it mainly by increasing dumping. A cyclic test has been performed to evaluate the behaviour of this masonry system. Test results demonstrate that the new system can improve the seismic behaviour of RC frame structures with masonry panels.
In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.
scite is a Brooklyn-based startup that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers